Strongly rigid countable Hausdorff spaces
- Prelegent(ci)
- Taras Banakh
- Afiliacja
- Ivan Franko National University of Lviv and UJK Kielce
- Termin
- 24 stycznia 2024 16:15
- Informacje na temat wydarzenia
- Zoom
- Seminarium
- Seminarium „Topologia i teoria mnogości”
A topological space $X$ is strongly rigid if every no-identity continuous self-map of $X$ is constant. Among known examples of strongly rigid spaces one can recall the famous Cook continua. In fact, every strongly rigid topological space is connected.
We shall explain how to construct strongly rigid COUNTABLE Hausdorff spaces.
Such countable Hausdorff spaces are connected and so cannot be functionally Hausdorff.