Nie jesteś zalogowany | Zaloguj się

Strongly rigid countable Hausdorff spaces

Prelegent(ci)
Taras Banakh
Afiliacja
Ivan Franko National University of Lviv and UJK Kielce
Termin
24 stycznia 2024 16:15
Informacje na temat wydarzenia
Zoom
Seminarium
Seminarium „Topologia i teoria mnogości”

A topological space $X$ is strongly rigid if every no-identity continuous self-map of $X$ is constant. Among known examples of strongly rigid spaces one can recall the famous Cook continua. In fact, every strongly rigid topological space is connected.
We shall explain how to construct strongly rigid COUNTABLE Hausdorff spaces.
Such countable Hausdorff spaces are connected and so cannot be functionally Hausdorff.