Solution of the center problem for polynomial Abel equations
- Prelegent(ci)
- Henryk Żołądek
- Afiliacja
- Uniwersytet Warszawski
- Termin
- 29 maja 2015 10:15
- Pokój
- p. 5840
- Seminarium
- Seminarium Zakładu Układów Dynamicznych
We prove that, if the Poincar\'{e} map $y(0)\longmapsto y(1)$ for solutions $y(x)$ of the polynomial Abel equation $dy/dx=P^{\prime}(x) y^{2} + Q^{\prime}(x) y^{3}$ is the identity, then the polynomials $P$ and $Q$ are compositions with a nonconstant polynomial $R(x)$ such that $R(0)=R(1).$