Nie jesteś zalogowany | Zaloguj się

On the dimension of the graph of the classical Weierstrass function

Prelegent(ci)
Krzysztof Barański
Afiliacja
Uniwersytet Warszawski
Termin
8 listopada 2013 10:15
Pokój
p. 5840
Seminarium
Seminarium Zakładu Układów Dynamicznych

We examine dimension of the graph of the famous Weierstrass non-differentiable function
\[
W_{\lambda, b} (x)  = \sum_{n=0}^{\infty}\lambda^n\cos(2\pi b^n x)
\]
for an integer $b$ larger than $1$ and $1/b < \lambda < 1$. We prove that for every $b$ there exists (explicitly given) $\lambda_b \in (1/b, 1)$ such that the Hausdorff dimension of the graph is equal to $D = 2+\frac{\log\lambda}{\log b}$ for every $\lambda\in(\lambda_b,1)$. We also show that the dimension is equal to $D$ for almost every $\lambda$ on some larger interval. The results solve partially a well-known thirty-year-old conjecture.

This is a joint work with Balazs Barany and Julia Romanowska.