Nie jesteś zalogowany | Zaloguj się

Universally meager sets and the Baire category property of some function spaces

Prelegent(ci)
Taras Banakh
Afiliacja
Ivan Franko National University of Lviv and UJK Kielce
Termin
13 marca 2019 16:15
Pokój
p. 5050
Seminarium
Seminarium „Topologia i teoria mnogości”

We shall discuss the problem of inner characterization of topological spaces $X$ for which the space $B_1(X)$ of real-valued Baire class one functions is Baire or Choquet. We prove that for any separable metrizable space $X$ the following implications hold: ($X$ is a $\lambda$-space)<=>($B_1(X)$ is Choquet)=>($B_1(X)$ is Baire)=>($X$ is universally meager). We do not know if the universal meagerness of $X$ is equivalent to the Baireness of the function space $B_1(X)$.