Time regularity of L\'{e}vy-type evolution in Hilbert spaces and of some $\alpha$-stable processes.
- Prelegent(ci)
- Witold Bednorz
- Afiliacja
- MIM UW
- Termin
- 12 kwietnia 2021 14:30
- Informacje na temat wydarzenia
- Zoom (please contant the organisers for the coordinates)
- Tytuł w języku angielskim
- joint work with Anna Talarczyk-Noble
- Seminarium
- Seminarium Zakładu Statystyki Matematycznej: „Łańcuchy Markowa i metody Monte Carlo”
This talk will be about the existence of weakly c\`adl\`ag versions of a solution to a linear equation in a Hilbert space $H$, driven by a Levy process taking values in a Hilbert space $U$. In particular, we focus on diagonal type processes, where processes on coordinates are functionals of independent $\alpha$-stable symmetric processes. We are going to show the equivalent characterization in this case. We apply the same techniques to obtain a sufficient condition for existence of a c\`adl\`ag version of stable processes described as integrals of deterministic functions with respect to symmetric $\alpha$-stable random measures with $\alpha\in[1,2)$. The idea is based on the analysis of Bernoulli type processes defined on an interval, where all coefficients are monotonic.