The Cauchy problem for the Navier-Stokes-Coriolis equations with spatially almost periodic initial data
- Prelegent(ci)
- Yoshikazu Giga
- Afiliacja
- Uniwersytet Tokijski
- Termin
- 30 lipca 2008 12:15
- Pokój
- p. 5440
- Seminarium
- Seminarium Zakładu Równań Fizyki Matematycznej
We survey solvability results on the Navier-Stokes equations with or without the Coriolis force when initial velocity may not decay at the spatial infinity. A typical such datum is a spatially almost periodic datum. We introduce a suitable space so that the life span can be taken uniformly in the magnitude of rotation. A global existence result for small initial data is given for nondecaying initial data for the Navier-Stokes-Coriolis equations.