Nie jesteś zalogowany | Zaloguj się

THE BORSUK-ULAM THEOREM FOR LOCALLY TRIVIAL COMPACT G-SPACES

Prelegent(ci)
MARIUSZ TOBOLSKI
Afiliacja
Uniwersytet Wrocławski
Termin
4 listopada 2020 17:15
Informacje na temat wydarzenia
Seminarium 2020-11-04 17:15:00
Seminarium
North Atlantic Noncommutative Geometry Seminar

The Borsuk-Ulam-type conjecture of Baum, Dąbrowski, and Hajac states that, given a free action of a non-trivial compact Hausdorff group G on a compact Hausdorff space X, there is no continuous G-equivariant map from the join X*G to X. The goal of this talk is to explain a proof of this conjecture for locally trivial compact G-spaces. This case boils down to the claim that there is no G-equivariant continuous map from the (n+1) join power of G to the n join power of G, which is a slight strengthening of an unpublished result of Bestvina and Edwards. (Based on joint work with Alexandru Chirvasitu and Ludwik Dąbrowski.)

https://www.youtube.com/watch?v=D47bN4Z37ZI