Nie jesteś zalogowany | Zaloguj się
Facebook
LinkedIn

RIEMANN-HILBERT CORRESPONDENCE FROM THE POINT OF VIEW OF HOLOMORPHIC FLOER THEORY

Prelegent(ci)
YAN SOIBELMAN
Afiliacja
Kansas State University, Manhattan, USA
Język referatu
angielski
Termin
3 grudnia 2025 17:15
Informacje na temat wydarzenia
IMPAN - Room 405 & zoom
Tytuł w języku polskim
RIEMANN-HILBERT CORRESPONDENCE FROM THE POINT OF VIEW OF HOLOMORPHIC FLOER THEORY
Seminarium
North Atlantic Noncommutative Geometry Seminar

To a complex symplectic manifold M one can assign two non-commutative spaces represented by two categories: one by the category of modules over the quantized sheaf of analytic functions on M, and one by the Fukaya category of M. The former appears, e.g., in the theory of D-modules or in representation theory. The latter is familiar to symplectic topologists doing Floer Theory. I am going to overview our more than 10-year old project with Maxim Kontsevich in which both categories appear together in a generalization of the Riemann-Hilbert correspondence.