Optimal pointwise lower bounds for even log-concave densities
- Prelegent(ci)
- Daniel Murawski
- Afiliacja
- University of Warsaw
- Język referatu
- angielski
- Termin
- 22 stycznia 2026 12:15
- Pokój
- p. 3160
- Tytuł w języku polskim
- Optimal pointwise lower bounds for even log-concave densities
- Seminarium
- Seminarium Zakładu Rachunku Prawdopodobieństwa
We show that among all symmetric real log-concave random variables X with variance 1 and any t_0 in range [0, √3] the quantity f_X(t_0) is minimized by a uniform, Laplace or truncated Laplace distribution. We show that for t_0 ≥ 1/√2 the minimum is attained by Laplace distribution and for t_0 ≤ 1/2 it is attained by uniform distribution. We also show that the constant 1/√2 cannot be improved and that there exist t_0 such that the minimizer is neither Laplace or uniform. This gives optimal dimension-free lower bounds for measures of non-central slices of isotropic convex bodies.
Nie jesteś zalogowany |