Optimal constants C_{p, 4} in Khintchine inequality
- Prelegent(ci)
- Daniel Murawski
- Afiliacja
- Uniwersytet Warszawski
- Język referatu
- angielski
- Termin
- 19 grudnia 2024 12:15
- Pokój
- p. 3160
- Tytuł w języku polskim
- Optimal constants C_{p, 4} in Khintchine inequality
- Seminarium
- Seminarium Zakładu Rachunku Prawdopodobieństwa
We prove that whenever S is a weighted sum of n independent Rademacher random variables, then ||S||_p / ||S||_4 \leq ||G||_p / ||G||_4, where G is a standard Gaussian random variable and p \geq 4. Moreover, we prove that for fixed n and p \geq 5, the maximum is attained in a case where all, except at most one, coefficients of Rademacher sum are equal. As a corollary of the main result, we show that ||S||_p \leq (1 - \Omega(1/n))||G||_p and 1/n is the optimal order in such an estimate.