On the infimum attained by the reflected fractional Brownian motion.
- Prelegent(ci)
- Kamil Kosiński
- Afiliacja
- Uniwersytet Wrocławski
- Termin
- 18 grudnia 2014 12:15
- Pokój
- p. 3260
- Seminarium
- Seminarium Zakładu Rachunku Prawdopodobieństwa
Let $\{B_H(t):t\ge 0\}$ be a fractional Brownian motion with Hurst parameter $H\in(\frac{1}{2},1)$. For the storage process
\[
Q_{B_H}(t)=\sup_{-\infty\le s\le t} \left(B_H(t)-B_H(s)-c(t-s)\right),\quad c>0,
\[
Q_{B_H}(t)=\sup_{-\infty\le s\le t} \left(B_H(t)-B_H(s)-c(t-s)\right),\quad c>0,
\]
we show that, for any $T(u)>0$ such that $T(u)=o(u^\frac{2H-1}{H})$,
\[
\mathbb P (\inf_{s\in[0,T(u)]} Q_{B_H}(s)>u)\sim\mathbb P(Q_{B_H}(0)>u)\sim \mathbb P (\sup_{s\in[0,T(u)]} Q_{B_H}(s)>u)
\]
as $u\to\infty$. This finding, known in the literature as the {\it strong Piterbarg property}, goes in line with previously observed properties of storage processes with self-similar and infinitely divisible input but without Gaussian component.
Jeżeli wśród publiczności nie będzie osób obcojęzycznych, odczyt zostanie wygłoszony w języku polskim.