O własnościach gatunków semelpatrycznych
- Prelegent(ci)
- Ryszard Rudnicki
- Afiliacja
- US i IMPAN
- Termin
- 14 kwietnia 2010 16:15
- Pokój
- p. 5820
- Seminarium
- Seminarium Zakładu Biomatematyki i Teorii Gier
Gatunek semelpatryczny, to taki, którego przedstawiciele rozmnażają się raz w życiu i umierają. Będziemy dodatkowo zakładać, że długość życia osobników n jest stała. Przedstawimy model struktury-wiekowej populacji semelpatrycznej z dyskretnym czasem. Dla n=1 model redukuje się do funkcji jednej zmiennej. W tym przypadku naszkicujemy dowód twierdzenia o globalnej stabilności punktu stałego w oparciu o twierdzenieSzarkowskiego.Dla n>1 model sprowadza się do transformacji w przestrzeni n-wymiarowej. Model ten ma zaskakujące własności. Między inny dla n parzystych rozwiązanie stacjonarne nigdy nie jest stabilne. Również asymptotyka długoczasowa jest zaskakująca. Konkurencja wewnątrz gatunkowa prowadzi do eliminacji wszystkich roczników za wyjątkiem jednego. Jest to zgodne z obserwacjami biologicznymi np. różnych gatunków owadów.