Concentration Properties of Restricted Measures
- Prelegent(ci)
- Piotr Nayar
- Afiliacja
- University of Minnesota, IMA
- Termin
- 17 grudnia 2015 12:15
- Pokój
- p. 3260
- Seminarium
- Seminarium Zakładu Rachunku Prawdopodobieństwa
We show that for any metric probability space (M, d, \mu) with a finite subgaussian constant \sigma^2(\mu) and any set A in M we have \sigma^2(\mu_A) \leq c log (e/\mu(A)) \sigma^2(\mu), where \mu_A is a restriction of \mu to the set A and c is a universal constant. We discuss examples and open problems. Based on joint work with Prasad Tetali and Sergey Bobkov.