Nie jesteś zalogowany | Zaloguj się

Cohomology rings of real flag manifolds

Prelegent(ci)
Akos Matszangosz
Afiliacja
Renyi Institute (Budapeszt)
Termin
20 kwietnia 2021 16:30
Informacje na temat wydarzenia
Zoom: 892 1108 9551 Password - type the number equal to rk(H^2((S^1)^{200};Z))
Seminarium
Seminarium „Topologia algebraiczna”

The cohomology ring of a complex (partial) flag manifold has two classical descriptions; a topological one (via characteristic classes) and a geometric one (via Schubert classes). Similar descriptions are well-known for real flag manifolds X with mod 2 coefficients. In this talk I will discuss some aspects of what can be said with rational, or integer coefficients. Namely, I will consider questions of the following type:

1) Which Schubert varieties represent an integer cohomology class?
2) What are their structure constants?
3) What can be said about torsion in H^*(X;\Z)?

I will also discuss some applications of the ring structure to real Schubert calculus.