Nie jesteś zalogowany | Zaloguj się
Facebook
LinkedIn

A GENERALIZATION OF K-THEORY TO OPERATOR SYSTEMS

Prelegent(ci)
WALTER VAN SUIJLEKOM
Afiliacja
Radboud Universiteit, Nijmegen, The Netherlands
Język referatu
angielski
Termin
26 listopada 2025 17:15
Informacje na temat wydarzenia
IMPAN - Room 405
Tytuł w języku polskim
A GENERALIZATION OF K-THEORY TO OPERATOR SYSTEMS
Seminarium
North Atlantic Noncommutative Geometry Seminar

We propose a generalization of K-theory to operator systems. Motivated by spectral truncations of noncommutative spaces described by C*-algebras, and inspired by the realization of the K-theory of a C*-algebra as the Witt group of hermitian forms, we introduce new operator system invariants indexed by the corresponding matrix size. A direct system is constructed whose direct limit possesses a semigroup structure that we use to define the K_0-group as the corresponding Grothendieck group. This is an invariant of unital operator systems and, more generally, an invariant up to Morita equivalence of operator systems. It reduces to the usual definition for C*-algebras. We will illustrate our invariant by means of the spectral localizer.