$k$-regularity in topology and geometry
- Speaker(s)
- Jarek Buczyński
- Affiliation
- Instytut Matematyki
- Date
- Jan. 11, 2018, 2:30 p.m.
- Room
- room 2180
- Title in Polish
- $k$-regularność w topologii i geometrii
- Seminar
- Colloquium Of MIM
Odwzorowanie ciągłe R^m -> R^N nazwiemy k-regularnym, jeśli obrazy dowolnych k różnych punktów są liniowo niezależne. Dla ustalonych m i k ważnym problemem postawionym przez Czebyszewa oraz Borsuka jest znalezienie najmniejszego N, dla którego takie odwzorowania istnieją. Podczas wykładu omówię ten problem, wraz z jego związkami z teorią interpolacji, topologią algebraiczną i geometrią algebraiczną, oraz jego uogólnienia.
A continuous map R^m -> R^N is called k-regular if the images of any k distinct points are linearly independent. Given integers m and k a problem going back to Chebyshev and Borsuk is to determine the minimal value of N for which such maps exist. During the talk I will explain an overview of this problem including its relation to interpolation theory, algebraic topology and algebraic geometry, and its generalisations.