You are not logged in | Log in

K)-space is not a three-space propert

Speaker(s)
Alberto Salguero Alarcón
Affiliation
Universidad de Extremadura, Badajoz, Spain
Date
Nov. 24, 2021, 4:15 p.m.
Information about the event
Zoom
Title in Polish
To be a C
Seminar
Topology and Set Theory Seminar

In the setting of Banach spaces, a property P is said to be a three-space property if whenever a Banach space X has a subspace Y so that both Y and the quotient space X/Y satisfy P, then X also satisfies P. It has been known for some time that ``to be isomorphic to a space of continuous functions C(K)'' is not a three-space property. In this talk we construct a remarkable example of such a fact: a Banach space X which is not isomorphic to any C(K), but it contains a copy of $c_0$ so that the quotient space $X/c_0$ is isomorphic to $c_0(\mathfrak c)$.
This is a joint work with Grzegorz Plebanek.