# To be a $C(K)$-space is not a three-space property 

## Alberto Salguero-Alarcón

(joint work with Grzegorz Plebanek)

Universidad de Extremadura, Badajoz, Spain

Seminar on Topology and Set Theory
University of Warsaw, November 24th, 2021

This work has been supported by project IB20038 (Junta de Extremadura) and by grants FPU18/00990 and EST19/00738 (Ministerio de Ciencia, Innovación y Universidades).

JUNTA DE
EXTREMADURA

## Banach spaces

Let $K$ be a compact Hausdorff space.

## Banach spaces

Let $K$ be a compact Hausdorff space.
(1) $C(K)=\{f: K \rightarrow \mathbb{R}$ continuous $\}$ is a Banach space with the norm $\|f\|=\sup _{x \in K}|f(x)|$.

## Banach spaces

Let $K$ be a compact Hausdorff space.
(1) $C(K)=\{f: K \rightarrow \mathbb{R}$ continuous $\}$ is a Banach space with the norm $\|f\|=\sup _{x \in K}|f(x)|$.
(2) $C(K)^{*}=M(K)$ the space of (bounded, regular, Borel, signed) measures, with the norm

$$
\|\mu\|=|\mu|(K)
$$

## Banach spaces

Let $K$ be a compact Hausdorff space.
(1) $C(K)=\{f: K \rightarrow \mathbb{R}$ continuous $\}$ is a Banach space with the norm $\|f\|=\sup _{x \in K}|f(x)|$.
(2) $C(K)^{*}=M(K)$ the space of (bounded, regular, Borel, signed) measures, with the norm

$$
\|\mu\|=|\mu|(K)
$$

(3) We say that $X$ is a $\mathcal{C}$-space if there is some $K$ so that $X$ is isomorphic to $C(K)$.

## Twisted sum of Banach spaces

A twisted sum of two Banach spaces $Y$ and $X$ is another space $Z$ so that

## Twisted sum of Banach spaces

A twisted sum of two Banach spaces $Y$ and $X$ is another space $Z$ so that
(1) $Z$ contains $Y$ as a closed subspace;

## Twisted sum of Banach spaces

A twisted sum of two Banach spaces $Y$ and $X$ is another space $Z$ so that
(1) $Z$ contains $Y$ as a closed subspace;
(2) $Z / Y$ is isomorphic to $X$.

## Twisted sum of Banach spaces

A twisted sum of two Banach spaces $Y$ and $X$ is another space $Z$ so that
(1) $Z$ contains $Y$ as a closed subspace;
(2) $Z / Y$ is isomorphic to $X$.

Exact sequences:

$$
0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0
$$

## Twisted sum of Banach spaces

A twisted sum of two Banach spaces $Y$ and $X$ is another space $Z$ so that
(1) $Z$ contains $Y$ as a closed subspace;
(2) $Z / Y$ is isomorphic to $X$.

Exact sequences:

$$
0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0
$$

We say $Z$ is trivial if one of the following equivalent conditions hold:

A twisted sum of two Banach spaces $Y$ and $X$ is another space $Z$ so that
(1) $Z$ contains $Y$ as a closed subspace;
(2) $Z / Y$ is isomorphic to $X$.

Exact sequences:

$$
0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0
$$

We say $Z$ is trivial if one of the following equivalent conditions hold:

- There is a "projection" (left-inverse) $P: Z \rightarrow Y$ so that $P i=\operatorname{Id}_{Y}$.

A twisted sum of two Banach spaces $Y$ and $X$ is another space $Z$ so that
(1) $Z$ contains $Y$ as a closed subspace;
(2) $Z / Y$ is isomorphic to $X$.

Exact sequences:

$$
0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0
$$

We say $Z$ is trivial if one of the following equivalent conditions hold:

- There is a "projection" (left-inverse) $P: Z \rightarrow Y$ so that $P i=\operatorname{Id}_{Y}$.
- There is a "selection" (right-inverse) $S: Z \rightarrow Y$ so that $q S=\operatorname{Id}_{X}$.


## Simple examples

## Simple examples

(1) Sobczyk's theorem: if $X$ is separable, every twisted sum

$$
0 \longrightarrow c_{0} \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

is trivial.

## Simple examples

(1) Sobczyk's theorem: if $X$ is separable, every twisted sum

$$
0 \longrightarrow c_{0} \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

is trivial.
(2) A non-trivial example:

$$
0 \longrightarrow c_{0} \longrightarrow \ell_{\infty} \longrightarrow \ell_{\infty} / c_{0} \longrightarrow 0
$$

## Twisted sums of $c_{0}$ and $C(K)$

## Twisted sums of $c_{0}$ and $C(K)$

## Definition

A countable discrete extension of a compact space $K$ is another compact space $L=K \cup \omega$ contaning a countable set $\omega$ of isolated points and a copy of $K$.

## Twisted sums of $c_{0}$ and $C(K)$

## Definition

A countable discrete extension of a compact space $K$ is another compact space $L=K \cup \omega$ contaning a countable set $\omega$ of isolated points and a copy of $K$.

Every countable discrete extension of $K$ gives rise to a twisted sum:

$$
0 \longrightarrow c_{0} \xrightarrow{i} C(K \cup \omega) \xrightarrow{q} C(K) \longrightarrow 0
$$

## Twisted sums of $c_{0}$ and $C(K)$

## Definition

A countable discrete extension of a compact space $K$ is another compact space $L=K \cup \omega$ contaning a countable set $\omega$ of isolated points and a copy of $K$.

Every countable discrete extension of $K$ gives rise to a twisted sum:

$$
0 \longrightarrow c_{0} \xrightarrow{i} C(K \cup \omega) \xrightarrow{q} C(K) \longrightarrow 0
$$

...but it can be trivial.

## Three-space properties

## Three-space properties

## Definition

A property $\mathcal{P}$ of Banach spaces is said to be a three-space property (3SP) if it is stable under twisted sums.

## Three-space properties

## Definition

A property $\mathcal{P}$ of Banach spaces is said to be a three-space property (3SP) if it is stable under twisted sums.

$$
0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

## Three-space properties

## Definition

A property $\mathcal{P}$ of Banach spaces is said to be a three-space property (3SP) if it is stable under twisted sums.

$$
0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

That is, if a Banach space $X$ has a subspace $Y$ so that both $Y$ and $X / Y$ have $\mathcal{P}$, then $X$ also has $\mathcal{P}$.

## Three-space properties

## Definition

A property $\mathcal{P}$ of Banach spaces is said to be a three-space property (3SP) if it is stable under twisted sums.

$$
0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

That is, if a Banach space $X$ has a subspace $Y$ so that both $Y$ and $X / Y$ have $\mathcal{P}$, then $X$ also has $\mathcal{P}$.

Examples:

## Three-space properties

## Definition

A property $\mathcal{P}$ of Banach spaces is said to be a three-space property (3SP) if it is stable under twisted sums.

$$
0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

That is, if a Banach space $X$ has a subspace $Y$ so that both $Y$ and $X / Y$ have $\mathcal{P}$, then $X$ also has $\mathcal{P}$.

Examples:
(1) Being finite-dimensional is a 3 SP .

## Three-space properties

## Definition

A property $\mathcal{P}$ of Banach spaces is said to be a three-space property (3SP) if it is stable under twisted sums.

$$
0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

That is, if a Banach space $X$ has a subspace $Y$ so that both $Y$ and $X / Y$ have $\mathcal{P}$, then $X$ also has $\mathcal{P}$.

Examples:
(1) Being finite-dimensional is a 3 SP.
(2) Separability is a 3SP.

## To be a $\mathcal{C}$-space...

...is not a three-space property.

## To be a $\mathcal{C}$-space...

...is not a three-space property.
(1) Benyamini-Cabello-Castillo:

## To be a $C$-space...

...is not a three-space property.
(1) Benyamini-Cabello-Castillo:

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}\left(\ell_{\infty} / c_{0}\right) \longrightarrow 0
$$

## To be a $\mathcal{C}$-space...

...is not a three-space property.
(1) Benyamini-Cabello-Castillo:

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}\left(\ell_{\infty} / c_{0}\right) \longrightarrow 0
$$

(2) Cabello-Castillo-Kalton-Yost:

$$
\begin{aligned}
& 0 \longrightarrow C\left(\omega^{\omega}\right) \longrightarrow X \longrightarrow c_{0} \longrightarrow 0 \\
& 0 \longrightarrow C[0,1] \longrightarrow c_{0} \longrightarrow 0
\end{aligned}
$$

## To be a $C$-space...

...is not a three-space property even for the "simplest" $\mathcal{C}$-spaces.

## To be a $C$-space...

...is not a three-space property even for the "simplest" $\mathcal{C}$-spaces.

## Theorem 1

$[\mathfrak{p}=\mathfrak{c}]$ There is a twisted sum of $c_{0}$ and $c_{0}(\mathfrak{c})$ which is not a $\mathcal{C}$-space.

## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?

## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?
(1) Every function $g \in C(K)$ can be extended to a function $\widehat{g} \in C\left(M_{1}(K)\right)$.

## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?
(1) Every function $g \in C(K)$ can be extended to a function $\widehat{g} \in C\left(M_{1}(K)\right)$.
(2) Consider $L=M_{1}(K) \cup \omega$ and

## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?
(1) Every function $g \in C(K)$ can be extended to a function $\widehat{g} \in C\left(M_{1}(K)\right)$.
(2) Consider $L=M_{1}(K) \cup \omega$ and
$0 \longrightarrow c_{0} \longrightarrow C\left(M_{1}(K) \cup \omega\right) \longrightarrow C\left(M_{1}(K)\right) \longrightarrow 0$

## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?
(1) Every function $g \in C(K)$ can be extended to a function $\widehat{g} \in C\left(M_{1}(K)\right)$.
(2) Consider $L=M_{1}(K) \cup \omega$ and
$0 \longrightarrow c_{0} \longrightarrow C\left(M_{1}(K) \cup \omega\right) \longrightarrow C\left(M_{1}(K)\right) \longrightarrow 0$


## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?
(1) Every function $g \in C(K)$ can be extended to a function $\widehat{g} \in C\left(M_{1}(K)\right)$.
(2) Consider $L=M_{1}(K) \cup \omega$ and
$0 \longrightarrow c_{0} \longrightarrow C\left(M_{1}(K) \cup \omega\right) \longrightarrow C\left(M_{1}(K)\right) \longrightarrow 0$个
$Z$

$$
Z=\left\{f \in C\left(M_{1}(K) \cup \omega\right): \exists g \in C(K):\left.f\right|_{M_{1}(K)}=\widehat{g}\right\}
$$

## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?
(1) Every function $g \in C(K)$ can be extended to a function $\widehat{g} \in C\left(M_{1}(K)\right)$.
(2) Consider $L=M_{1}(K) \cup \omega$ and
$0 \longrightarrow c_{0} \longrightarrow C\left(M_{1}(K) \cup \omega\right) \longrightarrow C\left(M_{1}(K)\right) \longrightarrow 0$


$$
Z=\left\{f \in C\left(M_{1}(K) \cup \omega\right): \exists g \in C(K):\left.f\right|_{M_{1}(K)}=\widehat{g}\right\}
$$

## First step

How to produce a "complicated" twisted sum of $c_{0}$ and $C(K)$ ?
(1) Every function $g \in C(K)$ can be extended to a function $\widehat{g} \in C\left(M_{1}(K)\right)$.
(2) Consider $L=M_{1}(K) \cup \omega$ and
$0 \longrightarrow c_{0} \longrightarrow C\left(M_{1}(K) \cup \omega\right) \longrightarrow C\left(M_{1}(K)\right) \longrightarrow 0$


$$
Z=\left\{f \in C\left(M_{1}(K) \cup \omega\right): \exists g \in C(K):\left.f\right|_{M_{1}(K)}=\widehat{g}\right\}
$$

LS How to produce $L=M_{1}(K) \cup \omega$ ?

## Second step

How to produce $Z$ so that it is not a $\mathcal{C}$-space?

## Second step

How to produce $Z$ so that it is not a $\mathcal{C}$-space?
Let $F \subseteq B_{X^{*}}$ be weak*-compact, and $0<c \leq 1$.

## Second step

How to produce $Z$ so that it is not a $\mathcal{C}$-space?
Let $F \subseteq B_{X^{*}}$ be weak*-compact, and $0<c \leq 1$.

## Definition

We say that $F$ is $c$-norming if

$$
c \cdot\|x\| \leq \sup _{x^{*} \in F}\left|x^{*}(x)\right|
$$

## Second step

How to produce $Z$ so that it is not a $\mathcal{C}$-space?
Let $F \subseteq B_{X^{*}}$ be weak*-compact, and $0<c \leq 1$.

## Definition

We say that $F$ is $c$-norming if

$$
c \cdot\|x\| \leq \sup _{x^{*} \in F}\left|x^{*}(x)\right|
$$

In other words, the "evaluation map":

$$
e: X \rightarrow C(F) \quad, \quad e(x)\left(x^{*}\right)=x^{*}(x)
$$

is an isomorphic embedding with $\left\|e^{-1}\right\| \leq \frac{1}{c}$.

## Second step

How to produce $Z$ so that it is not a $\mathcal{C}$-space?
Let $F \subseteq B_{X^{*}}$ be weak*-compact, and $0<c \leq 1$.

## Definition

We say that $F$ is $c$-norming if

$$
c \cdot\|x\| \leq \sup _{x^{*} \in F}\left|x^{*}(x)\right|
$$

In other words, the "evaluation map":

$$
e: X \rightarrow C(F) \quad, \quad e(x)\left(x^{*}\right)=x^{*}(x)
$$

is an isomorphic embedding with $\left\|e^{-1}\right\| \leq \frac{1}{c}$.

## Definition

We say that $F$ is free if $e$ is onto.

Lemma 2
For a Banach space X, TFAE:

Lemma 2
For a Banach space $X$, TFAE:
(1) $X$ is a $\mathcal{C}$-space.

## Lemma 2

For a Banach space $X$, TFAE:
(1) $X$ is a $\mathcal{C}$-space.
(2) There is a weak*-compact set $F \subseteq B_{X^{*}}$ which is $c$-norming for some $0<c \leq 1$ and free.

## Third step

How to recognize sets that are not free?

## Third step

How to recognize sets that are not free?

## Lemma 3

Let $F$ be a c-norming set.

## Third step

How to recognize sets that are not free?

## Lemma 3

Let $F$ be a c-norming set. If there are different points $x_{0}^{*}, x_{1}^{*}, x_{2}^{*} \in F$ such that

$$
\left\|x_{0}^{*}-\frac{1}{2}\left(x_{1}^{*}+x_{2}^{*}\right)\right\|<c
$$

## Third step

How to recognize sets that are not free?

## Lemma 3

Let $F$ be a c-norming set. If there are different points $x_{0}^{*}, x_{1}^{*}, x_{2}^{*} \in F$ such that

$$
\left\|x_{0}^{*}-\frac{1}{2}\left(x_{1}^{*}+x_{2}^{*}\right)\right\|<c
$$

then $F$ cannot be free.

## Third step

How to recognize sets that are not free?

## Lemma 3

Let $F$ be a c-norming set. If there are different points $x_{0}^{*}, x_{1}^{*}, x_{2}^{*} \in F$ such that

$$
\left\|x_{0}^{*}-\frac{1}{2}\left(x_{1}^{*}+x_{2}^{*}\right)\right\|<c
$$

then $F$ cannot be free.
We call the points $x_{0}^{*}, x_{1}^{*}, x_{2}^{*}$ a $c$-forbidden triple.

## Idea of the construction

## Idea of the construction

For an exact sequence

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}(\mathfrak{c}) \longrightarrow 0
$$

we know:

## Idea of the construction

For an exact sequence

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}(\mathfrak{c}) \longrightarrow 0
$$

we know:
(1) $X^{*}$ is isomorphic to $\ell_{1} \times \ell_{1}(\mathfrak{c})$.

## Idea of the construction

For an exact sequence

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}(\mathfrak{c}) \longrightarrow 0
$$

we know:
(1) $X^{*}$ is isomorphic to $\ell_{1} \times \ell_{1}(\mathfrak{c})$.
(2) Every $c$-norming set $F \subset B_{X^{*}}$ contains a sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ so that,

## Idea of the construction

For an exact sequence

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}(\mathfrak{c}) \longrightarrow 0
$$

we know:
(1) $X^{*}$ is isomorphic to $\ell_{1} \times \ell_{1}(\mathfrak{c})$.
(2) Every $c$-norming set $F \subset B_{X^{*}}$ contains a sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ so that, writing

$$
\varphi_{n}=\mu_{n}+\lambda_{n} \quad, \quad \mu_{n} \in \ell_{1}, \lambda_{n} \in \ell_{1}(\mathfrak{c})
$$

we have $\left|\mu_{n}\{n\}\right| \geq c \forall n \in \omega$.

## Idea of the construction

For an exact sequence

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}(\mathfrak{c}) \longrightarrow 0
$$

we know:
(1) $X^{*}$ is isomorphic to $\ell_{1} \times \ell_{1}(\mathfrak{c})$.
(2) Every $c$-norming set $F \subset B_{X^{*}}$ contains a sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ so that, writing

$$
\varphi_{n}=\mu_{n}+\lambda_{n} \quad, \quad \mu_{n} \in \ell_{1}, \lambda_{n} \in \ell_{1}(\mathfrak{c})
$$

we have $\left|\mu_{n}\{n\}\right| \geq c \forall n \in \omega$.
Let us call such a sequence $\left(\mu_{n}\right)_{n=1}^{\infty} c$-admissible.

## Idea of the construction

For an exact sequence

$$
0 \longrightarrow c_{0} \longrightarrow X \longrightarrow c_{0}(\mathfrak{c}) \longrightarrow 0
$$

we know:
(1) $X^{*}$ is isomorphic to $\ell_{1} \times \ell_{1}(\mathfrak{c})$.
(2) Every $c$-norming set $F \subset B_{X^{*}}$ contains a sequence $\left(\varphi_{n}\right)_{n=1}^{\infty}$ so that, writing

$$
\varphi_{n}=\mu_{n}+\lambda_{n} \quad, \quad \mu_{n} \in \ell_{1}, \lambda_{n} \in \ell_{1}(\mathfrak{c})
$$

we have $\left|\mu_{n}\{n\}\right| \geq c \forall n \in \omega$.
Let us call such a sequence $\left(\mu_{n}\right)_{n=1}^{\infty} c$-admissible.
[8> What we do: we "destroy" the possibility that every admissible sequence lies inside a norming free set.

## The core

## Theorem 4

$[\mathfrak{p}=\mathfrak{c}]$ Fix a collection $\left\{\mathcal{D}_{\alpha}: \alpha<\mathfrak{c}\right\}$ of dense families.
There is an almost disjoint family $\mathcal{A}$ so that the attached space

$$
L=\frac{K_{\mathcal{A}} \sqcup B_{\ell_{1}(\mathfrak{c})}}{\equiv}
$$

has the following property:

## Theorem 4

$[\mathfrak{p}=\mathfrak{c}]$ Fix a collection $\left\{\mathcal{D}_{\alpha}: \alpha<\mathfrak{c}\right\}$ of dense families.
There is an almost disjoint family $\mathcal{A}$ so that the attached space

$$
L=\frac{K_{\mathcal{A}} \sqcup B_{\ell_{1}(\mathfrak{c})}}{\equiv}
$$

has the following property:
For every c-admissible sequence $\left(\mu_{n}\right)_{n=1}^{\infty}$ and every $\alpha<\mathfrak{c}$ there $i s$ :

## Theorem 4

$[\mathfrak{p}=\mathfrak{c}]$ Fix a collection $\left\{\mathcal{D}_{\alpha}: \alpha<\mathfrak{c}\right\}$ of dense families.
There is an almost disjoint family $\mathcal{A}$ so that the attached space

$$
L=\frac{K_{\mathcal{A}} \sqcup B_{\ell_{1}(\mathfrak{c})}}{\equiv}
$$

has the following property:
For every c-admissible sequence $\left(\mu_{n}\right)_{n=1}^{\infty}$ and every $\alpha<\mathfrak{c}$ there $i s$ :

- $D \in \mathcal{D}_{\alpha}$.


## Theorem 4

$[\mathfrak{p}=\mathfrak{c}]$ Fix a collection $\left\{\mathcal{D}_{\alpha}: \alpha<\mathfrak{c}\right\}$ of dense families.
There is an almost disjoint family $\mathcal{A}$ so that the attached space

$$
L=\frac{K_{\mathcal{A}} \sqcup B_{\ell_{1}(\mathfrak{c})}}{\equiv}
$$

has the following property:
For every c-admissible sequence $\left(\mu_{n}\right)_{n=1}^{\infty}$ and every $\alpha<\mathfrak{c}$ there $i s$ :

- $D \in \mathcal{D}_{\alpha}$.
- a forbidden c-triple in the closure of $\left\{\mu_{n}: n \in D\right\}$ inside $M(L)$.


## Finally...

## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.

## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.
(1) Enumerate all the sequences in $B_{\ell_{1}(\mathfrak{c})}$ as $\left\{\left(\lambda_{n}^{\alpha}\right)_{n \in \omega}: \alpha<\mathfrak{c}\right\}$, and apply theorem 4 with

$$
\mathcal{D}_{\alpha}=\left\{D:\left(\lambda_{n}^{\alpha}\right)_{n \in D} \text { is convergent }\right\}
$$

## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.
(1) Enumerate all the sequences in $B_{\ell_{1}(\mathfrak{c})}$ as $\left\{\left(\lambda_{n}^{\alpha}\right)_{n \in \omega}: \alpha<\mathfrak{c}\right\}$, and apply theorem 4 with

$$
\mathcal{D}_{\alpha}=\left\{D:\left(\lambda_{n}^{\alpha}\right)_{n \in D} \text { is convergent }\right\}
$$

(2) Suppose $F$ is a $c$-norming set.

## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.
(1) Enumerate all the sequences in $B_{\ell_{1}(\mathfrak{c})}$ as $\left\{\left(\lambda_{n}^{\alpha}\right)_{n \in \omega}: \alpha<\mathfrak{c}\right\}$, and apply theorem 4 with

$$
\mathcal{D}_{\alpha}=\left\{D:\left(\lambda_{n}^{\alpha}\right)_{n \in D} \text { is convergent }\right\}
$$

(2) Suppose $F$ is a $c$-norming set.

## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.
(1) Enumerate all the sequences in $B_{\ell_{1}(\mathfrak{c})}$ as $\left\{\left(\lambda_{n}^{\alpha}\right)_{n \in \omega}: \alpha<\mathfrak{c}\right\}$, and apply theorem 4 with

$$
\mathcal{D}_{\alpha}=\left\{D:\left(\lambda_{n}^{\alpha}\right)_{n \in D} \text { is convergent }\right\}
$$

(2) Suppose $F$ is a $c$-norming set. Then $F$ contains a $c$-admissible sequence

$$
\varphi_{n}=\mu_{n}+\lambda_{n}^{\alpha}
$$

## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.
(1) Enumerate all the sequences in $B_{\ell_{1}(\mathfrak{c})}$ as $\left\{\left(\lambda_{n}^{\alpha}\right)_{n \in \omega}: \alpha<\mathfrak{c}\right\}$, and apply theorem 4 with

$$
\mathcal{D}_{\alpha}=\left\{D:\left(\lambda_{n}^{\alpha}\right)_{n \in D} \text { is convergent }\right\}
$$

(2) Suppose $F$ is a $c$-norming set. Then $F$ contains a $c$-admissible sequence

$$
\varphi_{n}=\mu_{n}+\lambda_{n}^{\alpha}
$$

- $\left\{x_{i}^{*}, i=0,1,2\right\}$ is a $c$-forbidden triple in $\overline{\left\{\mu_{n}: n \in D\right\}}$.


## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.
(1) Enumerate all the sequences in $B_{\ell_{1}(\mathfrak{c})}$ as $\left\{\left(\lambda_{n}^{\alpha}\right)_{n \in \omega}: \alpha<\mathfrak{c}\right\}$, and apply theorem 4 with

$$
\mathcal{D}_{\alpha}=\left\{D:\left(\lambda_{n}^{\alpha}\right)_{n \in D} \text { is convergent }\right\}
$$

(2) Suppose $F$ is a $c$-norming set. Then $F$ contains a $c$-admissible sequence

$$
\varphi_{n}=\mu_{n}+\lambda_{n}^{\alpha}
$$

- $\left\{x_{i}^{*}, i=0,1,2\right\}$ is a $c$-forbidden triple in $\overline{\left\{\mu_{n}: n \in D\right\}}$. - $\lim _{n \in D} \lambda_{n}^{\alpha}=\lambda$.


## Finally...

$$
Z=\left\{f \in C(L): \exists g \in c_{0}(\mathfrak{c}):\left.f\right|_{B_{\ell_{1}(c)}}=\widehat{g}\right\}
$$

cannot be a $\mathcal{C}$-space.
(1) Enumerate all the sequences in $B_{\ell_{1}(\mathfrak{c})}$ as $\left\{\left(\lambda_{n}^{\alpha}\right)_{n \in \omega}: \alpha<\mathfrak{c}\right\}$, and apply theorem 4 with

$$
\mathcal{D}_{\alpha}=\left\{D:\left(\lambda_{n}^{\alpha}\right)_{n \in D} \text { is convergent }\right\}
$$

(2) Suppose $F$ is a $c$-norming set. Then $F$ contains a $c$-admissible sequence

$$
\varphi_{n}=\mu_{n}+\lambda_{n}^{\alpha}
$$

- $\left\{x_{i}^{*}, i=0,1,2\right\}$ is a $c$-forbidden triple in $\overline{\left\{\mu_{n}: n \in D\right\}}$. - $\lim _{n \in D} \lambda_{n}^{\alpha}=\lambda$.
(3) $\left\{x_{i}^{*}+\lambda: i=0,1,2\right\}$ is a forbidden $c$-triple inside $F$.


## Thank you FOR YOUR ATTENTION

