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Banach spaces

Let K be a compact Hausdorff space.

1 C(K) = {f : K → R continuous} is a Banach space with
the norm ‖f‖ = supx∈K |f(x)|.

2 C(K)∗ = M(K) the space of (bounded, regular, Borel,
signed) measures, with the norm

‖µ‖ = |µ|(K)

3 We say that X is a C-space if there is some K so that X is
isomorphic to C(K).
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Twisted sum of Banach spaces

A twisted sum of two Banach spaces Y and X is another space
Z so that

1 Z contains Y as a closed subspace;

2 Z/Y is isomorphic to X.

Exact sequences:

0 Y Z X 0i q

We say Z is trivial if one of the following equivalent conditions
hold:

There is a “projection” (left-inverse) P : Z → Y so that
Pi = IdY .

There is a “selection” (right-inverse) S : Z → Y so that
qS = IdX .
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Simple examples

1 Sobczyk’s theorem: if X is separable, every twisted sum

0 c0 Z X 0

is trivial.

2 A non-trivial example:

0 c0 `∞ `∞/c0 0
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Twisted sums of c0 and C(K)

Definition

A countable discrete extension of a compact space K is another
compact space L = K ∪ ω contaning a countable set ω of
isolated points and a copy of K.

Every countable discrete extension of K gives rise to a twisted
sum:

0 c0 C(K ∪ ω) C(K) 0i q

...but it can be trivial.
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Three-space properties

Definition

A property P of Banach spaces is said to be a three-space
property (3SP) if it is stable under twisted sums.

0 Y Z X 0

That is, if a Banach space X has a subspace Y so that both Y
and X/Y have P, then X also has P.

Examples:

1 Being finite-dimensional is a 3SP.

2 Separability is a 3SP.
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To be a C-space...

...is not a three-space property.

(1) Benyamini-Cabello-Castillo:

0 c0 X c0(`∞/c0) 0

(2) Cabello-Castillo-Kalton-Yost:

0 C(ωω) X c0 0

0 C[0, 1] X c0 0
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To be a C-space...

...is not a three-space property even for the “simplest” C-spaces.

Theorem 1

[p = c] There is a twisted sum of c0 and c0(c) which is not a
C-space.
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First step

How to produce a “complicated” twisted sum of c0 and C(K)?

1 Every function g ∈ C(K) can be extended to a function
ĝ ∈ C(M1(K)).

2 Consider L = M1(K) ∪ ω and

0 c0 C(M1(K) ∪ ω) C(M1(K)) 0
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Alberto Salguero Alarcón C(K)-spaces



First step

How to produce a “complicated” twisted sum of c0 and C(K)?

1 Every function g ∈ C(K) can be extended to a function
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How to produce L = M1(K) ∪ ω?

Alberto Salguero Alarcón C(K)-spaces



Alberto Salguero Alarcón C(K)-spaces



Second step

How to produce Z so that it is not a C-space?

Let F ⊆ BX∗ be weak*-compact, and 0 < c ≤ 1.

Definition

We say that F is c-norming if

c · ‖x‖ ≤ sup
x∗∈F

|x∗(x)|

In other words, the “evaluation map”:

e : X → C(F ) , e(x)(x∗) = x∗(x)

is an isomorphic embedding with ‖e−1‖ ≤ 1
c .

Definition

We say that F is free if e is onto.
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Lemma 2

For a Banach space X, TFAE:

1 X is a C-space.

2 There is a weak*-compact set F ⊆ BX∗ which is c-norming
for some 0 < c ≤ 1 and free.
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Third step

How to recognize sets that are not free?

Lemma 3

Let F be a c-norming set. If there are different points
x∗0, x

∗
1, x
∗
2 ∈ F such that

‖x∗0 − 1
2(x∗1 + x∗2)‖ < c

then F cannot be free.

We call the points x∗0, x
∗
1, x
∗
2 a c-forbidden triple.
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Idea of the construction

For an exact sequence

0 c0 X c0(c) 0

we know:

1 X∗ is isomorphic to `1 × `1(c).
2 Every c-norming set F ⊂ BX∗ contains a sequence (ϕn)∞n=1

so that, writing

ϕn = µn + λn , µn ∈ `1, λn ∈ `1(c)

we have |µn{n}| ≥ c ∀n ∈ ω.
Let us call such a sequence (µn)∞n=1 c-admissible.

What we do: we “destroy” the possibility that every
admissible sequence lies inside a norming free set.
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The core

Theorem 4

[p = c] Fix a collection {Dα : α < c} of dense families.
There is an almost disjoint family A so that the attached space

L =
KA tB`1(c)

≡

has the following property:
For every c-admissible sequence (µn)∞n=1 and every α < c there
is:

D ∈ Dα.

a forbidden c-triple in the closure of {µn : n ∈ D} inside
M(L).
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Finally...

Z = {f ∈ C(L) : ∃g ∈ c0(c) : f |B`1(c)
= ĝ}

cannot be a C-space.

1 Enumerate all the sequences in B`1(c) as {(λαn)n∈ω : α < c},
and apply theorem 4 with

Dα = {D : (λαn)n∈D is convergent }

2 Suppose F is a c-norming set. Then F contains a
c-admissible sequence

ϕn = µn + λαn

{x∗i , i = 0, 1, 2} is a c-forbidden triple in {µn : n ∈ D}.
limn∈D λ

α
n = λ.

3 {x∗i + λ : i = 0, 1, 2} is a forbidden c-triple inside F .
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Thank you

for your attention
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