Perpetuity o lekkich ogonach
- Speaker(s)
- Bartosz Kołodziejek
- Affiliation
- Politechnika Warszawska
- Date
- Dec. 7, 2017, 12:15 p.m.
- Room
- room 3260
- Seminar
- Seminar of Probability Group
W referacie opowiem o najnowszych wynikach z badaniu asymptotyki ogonów rozwiązań (zwanych perpetuitami) równania $X=AX+B$, gdzie równość jest rozumiana jako równość według rozkładu oraz $X$ i wektor $(A,B)$ są niezależne po prawej stronie równości. W znanych wynikach, ogon $X$ zależy w dużej mierze tylko od rozkładów brzegowych $(A,B)$, a w mniejszej od struktury zależności wewnątrz tego wektora. Wynika to z faktu, że asymptotyka ogona $X$ była zwykle badana, gdy $A$ w jakimś sensie dominuje $B$ lub odwrotnie. Wiadomo, że jeśli $A\in[0,1)$ p.n. oraz $B\geq0$ ma wszystkie wykładnicze momenty, to $X$ również ma wszystkie wykładnicze momenty, ale bardzo niewiele wiadomo o ogonie $X$. Celem referatu jest opis asymptotyki logarytmu ogona $X$ w tej sytuacji. Okazuje się, że, przy tych założeniach, struktura zależności $(A,B)$ odgrywa tutaj istotną rolę.