Oszacowania momentów chaosów gaussowskich rzędu 2 o wartościach w przestrzeni Banacha
- Speaker(s)
- Rafał Meller
- Affiliation
- Uniwersytet Warszawski
- Date
- Nov. 15, 2018, 12:15 p.m.
- Room
- room 3260
- Seminar
- Seminar of Probability Group
Omówimy problem dwustronnego szacowania momentów zmiennej S=GAG^T, gdzie G to standardowy wektor normalny, natomiast A to macierz o wyrazach z przestrzeni Banacha. Zaprezentujemy hipotezę dotyczącą dwustronnego oszacowania oraz pokażemy, że zachodzi ona z dokładnością do czynnika logarytmicznego. Pokażemy też pewne oszacowanie momentów z góry, które w pewnych przypadkach (np. przestrzeniach L_q) jest odwracalne. Przedstawimy też wnioski wynikające z oszacowania momentów, w tym uogólnienie nierówności Hansona-Wrighta na przypadek wektorowy. Referat opierać się będzie na wspólnej pracy z Radosławem Adamczakiem i Rafałem Latałą.