You are not logged in | Log in

Nierówności logarytmiczne Sobolewa i koncentracja miary dla funkcji wypukłych i chaosów.

Speaker(s)
Radosław Adamczak
Affiliation
IM PAN
Date
Jan. 6, 2005, 12:15 p.m.
Room
room 5850
Seminar
Seminar of Probability Group

W pierwszej części referatu zaprezentuję pewną klasę miar probabilistycznych na prostej, spełniających logarytmiczną nierówność Sobolewa dla gładkich funkcji wypukłych, a niekoniecznie dla wszystkich funkcji gładkich. Jako wniosek, poprzez tensoryzację i argument Herbsta, otrzymamy nierówności koncentracyjne dla funkcji wypukłych, lipschitzowskich i odpowiedniej klasy miar produktowych. Otrzymane wyniki zostaną następnie wykorzystane do oszacowań momentów i nierówności koncentracyjnych dla chaosów wielomianowych.