joint work with Anna Talarczyk-Noble
- Speaker(s)
- Witold Bednorz
- Affiliation
- MIM UW
- Date
- April 12, 2021, 2:30 p.m.
- Information about the event
- Zoom (please contant the organisers for the coordinates)
- Title in Polish
- Time regularity of L\'{e}vy-type evolution in Hilbert spaces and of some $\alpha$-stable processes.
- Seminar
- Seminar of Mathematical Statistics Group: Markov Chains and Monte Carlo Methods
This talk will be about the existence of weakly c\`adl\`ag versions of a solution to a linear equation in a Hilbert space $H$, driven by a Levy process taking values in a Hilbert space $U$. In particular, we focus on diagonal type processes, where processes on coordinates are functionals of independent $\alpha$-stable symmetric processes. We are going to show the equivalent characterization in this case. We apply the same techniques to obtain a sufficient condition for existence of a c\`adl\`ag version of stable processes described as integrals of deterministic functions with respect to symmetric $\alpha$-stable random measures with $\alpha\in[1,2)$. The idea is based on the analysis of Bernoulli type processes defined on an interval, where all coefficients are monotonic.