Algebraic Geometry
Description
Algebraic group actions, moduli problems, toric geometry, surfaces and higher dimensional algebraic varieties, affine geometry, secant varieties, Hilbert schemes, geometry over fields of positive characteristic, relations to algebraic topology.
Seminars
Employees and PhD students
-
dr hab. Maciej Borodzik, prof. IMPAN
Curves on surfaces, deformations of curves singularities, connections with knot theory, lattice homology
-
dr Weronika Buczyńska
Toric geometry, secant varieties, rank of tensors
-
dr Maria Donten-Bury
Cox rings, resolution of singularities, hyperkaehler manifolds, combinatorial algebraic geometry
-
dr Francesco Galuppi
Tensor decompositions, secant varieties, signature tensors of paths, tensor eigenvalues and eigenvectors
-
dr hab. Joachim Jelisiejew
Moduli spaces, Hilbert schemes, tensors, Białynicki-Birula decompositions, motives
-
dr Oskar Kędzierski
Toric geometry, G-Hilbert schemes, quiver representations
-
prof. dr hab. Adrian Langer
Moduli spaces, surfaces and higher dimensional varieties, algebraic geometry over fields of positive characteristic
-
dr hab. Tomasz Maszczyk
Complex algebraic geometry, non-commutative geometry
-
dr Tomasz Pełka
Singularity theory, symplectic methods; affine geometry
-
dr hab. Andrzej Weber, prof. UW
Topology of algebraic varieties: intersection cohomology, weight filtration, equivariant cohomology, Thom polynomials and equivariant characteristic classes of singularities
-
prof. dr hab. Jarosław Wiśniewski
Fano manifolds, varieties with group actions.
-
dr Magdalena Zielenkiewicz
Invariants of torus actions, characteristic classes od singular varieties, Hilbert scheme of points, quiver grassmannians
-
prof. dr hab. Henryk Żołądek
Jacobian conjecture, connections of ODE's with algebraic geometry.