You are not logged in | Log in

Description

Algebraic group actions, moduli problems, toric geometry, surfaces and higher dimensional algebraic varieties, affine geometry, secant varieties, Hilbert schemes, geometry over fields of positive characteristic, relations to algebraic topology.

Seminars

Employees and PhD students

  • dr hab. Maciej Borodzik, prof. IMPAN

    Curves on surfaces, deformations of curves singularities, connections with knot theory, lattice homology

  • dr Weronika Buczyńska

    Toric geometry, secant varieties, rank of tensors

  • dr Maria Donten-Bury

    Cox rings, resolution of singularities, hyperkaehler manifolds, combinatorial algebraic geometry

  • dr Francesco Galuppi

    Tensor decompositions, secant varieties, signature tensors of paths, tensor eigenvalues and eigenvectors

  • dr hab. Joachim Jelisiejew

    Moduli spaces, Hilbert schemes, tensors, Białynicki-Birula decompositions, motives

  • dr Oskar Kędzierski

    Toric geometry, G-Hilbert schemes, quiver representations

  • prof. dr hab. Adrian Langer

    Moduli spaces, surfaces and higher dimensional varieties, algebraic geometry over fields of positive characteristic

  • dr hab. Tomasz Maszczyk

    Complex algebraic geometry, non-commutative geometry

  • dr Tomasz Pełka

    Singularity theory, symplectic methods; affine geometry

  • dr hab. Andrzej Weber, prof. UW

    Topology of algebraic varieties: intersection cohomology, weight filtration, equivariant cohomology, Thom polynomials and equivariant characteristic classes of singularities

  • prof. dr hab. Jarosław Wiśniewski

    Fano manifolds, varieties with group actions.

  • dr Magdalena Zielenkiewicz

    Invariants of torus actions, characteristic classes od singular varieties, Hilbert scheme of points, quiver grassmannians

  • prof. dr hab. Henryk Żołądek

    Jacobian conjecture, connections of ODE's with algebraic geometry.