You are not logged in | Log in
Return to the list of research fields

Algebra and Number Theory

Description

Ring theory (mainly associative), module theory, group theory, semigroup theory and number theory. Lattice theoretical approach to algebraic structures and other branches of universal algebra, including partial algebras.

Seminars

Employees and PhD students

  • dr hab. Norbert Dojer

    Universal algebra, term rewriting

  • dr Łukasz Kubat

    Noncommutative rings, representation theory, homological algebra

  • prof. dr hab. Zbigniew Marciniak

    Noncommutative algebra, group rings, cohomology of groups

  • dr hab. Tomasz Maszczyk

    Noncommutative geometry

  • dr hab. Jerzy Matczuk, prof. UW

    Ring theory, Hopf algebras

  • dr Arkadiusz Męcel

    Ring theory, Theory of semigroups, Finite dimensional algebras

  • prof. dr hab. Jan Okniński

    Noncommutative rings, theory of semigroups, theory of matrices

  • dr Konrad Pióro

    Universal algebra, in particular: theory of partial algebras, lattice theory, subalgebra and congruence lattices of an algebra, graph representation of an algebra

  • dr Mikołaj Rotkiewicz

    Lie algebras, graded manifolds, supergeometry

  • dr hab. Mariusz Skałba, prof. UW

    Number theory: polynomial and exponential congruences, multiplicative diophantine equations, elliptic curves, arithmetic properties of digital expansions, geometry of numbers

  • dr Bartosz Źrałek

    Algorithmic number theory, public-key cryptography