Algebra and Number Theory
Description
Ring theory (mainly associative), module theory, group theory. Lie algebras and related topics. Semigroup theory and universal algebra. Number theory and its applications to cryptography.
Seminars
Employees and PhD students
-
dr hab. Joachim Jelisiejew
Homologiczne niezmienniki tensorów, algebry i moduły zerowymiarowe, algebry Gorensteina
-
dr Łukasz Kubat
Non-commutative rings, representation theory, Yang–Baxter equation and related structures
-
prof. dr hab. Zbigniew Marciniak
Noncommutative algebra, group rings, cohomology of groups
-
dr hab. Tomasz Maszczyk
Noncommutative geometry
-
dr hab. Jerzy Matczuk, prof. UW
Ring theory, Hopf algebras
-
dr Arkadiusz Męcel
Ring theory, Theory of semigroups, Finite dimensional algebras
-
prof. dr hab. Jan Okniński
Noncommutative rings, theory of semigroups, theory of matrices
-
dr Konrad Pióro
Universal algebra, in particular: theory of partial algebras, lattice theory, subalgebra and congruence lattices of an algebra, graph representation of an algebra
-
dr Mikołaj Rotkiewicz
Lie algebras, graded manifolds, supergeometry
-
dr hab. Mariusz Skałba, prof. UW
Number theory: polynomial and exponential congruences, multiplicative diophantine equations, elliptic curves, arithmetic properties of digital expansions, geometry of numbers
-
dr Magdalena Wiertel
Noncommutative ring theory, semigroup theory, algebraic structures related to the Yang-Baxter equation
-
dr Bartosz Źrałek
Algorithmic number theory, public-key cryptography