Shorthands | denote |
---|---|
u_a | algebraic unknotting number |
Nak | Nakanishi index |
det | determinant |
sign | signature |
max LT | maximum absolute value of Levine-Tristram signatures |
Hidden features | |
Click on | to see |
algebraic unknotting number | how it has been detected |
Alexander polynomial | a Seifert matrix (nondegenerate representative in the S-equivalence class) |
Nakanishi index | generator of the Alexander module, if Nakanishi index is 1 |
Determinant | H_1 of the double branched cover |
Welcome to the KNOTORIOUS world wide web page! | ||
set up by | Maciej Borodzik | mcboro'at'mimuw;edu;pl |
and | Stefan Friedl | sfriedl'at'gmail;com |
last update of the webpage | 19 Feb 2012 | |
last update of the knotorious data | 01 Dec 2011 |
Knot | u_a | Alexander polynomial | Nak. index | det. | sign | max LT. | ||||||||||||||||||||||||||||||||||||
3_1 | 1 detected by an unknotting move | 1-t+t^2 Seifert matrix of 3_1
| 1 Generator of the Alexander module (0,1) the Blanchfield form on it 1 | 3 First homology of the double branched cover of 3_1 Z/3 | -2 | 2 | ||||||||||||||||||||||||||||||||||||
4_1 | 1 detected by an unknotting move | -1+3t-t^2 Seifert matrix of 4_1
| 1 Generator of the Alexander module (0,1) the Blanchfield form on it 1 | 5 First homology of the double branched cover of 4_1 Z/5 | 0 | 0 | ||||||||||||||||||||||||||||||||||||
5_1 | 2 detected by the signature | 1-t+t^2-t^3+t^4 Seifert matrix of 5_1
| 1 Generator of the Alexander module (0,0,1,0) the Blanchfield form on it t^-1-1+t | 5 First homology of the double branched cover of 5_1 Z/5 | -4 | 4 | ||||||||||||||||||||||||||||||||||||
5_2 | 1 detected by an unknotting move | 2-3t+2t^2 Seifert matrix of 5_2
| 1 Generator of the Alexander module (1,0) the Blanchfield form on it 1 | 7 First homology of the double branched cover of 5_2 Z/7 | -2 | 2 | ||||||||||||||||||||||||||||||||||||
6_1 | 1 detected by an unknotting move | -2+5t-2t^2 Seifert matrix of 6_1
| 1 Generator of the Alexander module (0,1) the Blanchfield form on it t^-1-2+t | 9 First homology of the double branched cover of 6_1 Z/9 | 0 | 0 | ||||||||||||||||||||||||||||||||||||
6_2 | 1 detected by an unknotting move | -1+3t-3t^2+3t^3-t^4 Seifert matrix of 6_2
| 1 Generator of the Alexander module (0,0,1,0) the Blanchfield form on it -t^-1+3-t | 11 First homology of the double branched cover of 6_2 Z/11 | -2 | 2 | ||||||||||||||||||||||||||||||||||||
6_3 | 1 detected by an unknotting move | 1-3t+5t^2-3t^3+t^4 Seifert matrix of 6_3
| 1 Generator of the Alexander module (0,0,1,0) the Blanchfield form on it -1 | 13 First homology of the double branched cover of 6_3 Z/13 | 0 | 0 | ||||||||||||||||||||||||||||||||||||
7_1 | 3 detected by the signature | 1-t+t^2-t^3+t^4-t^5+t^6 Seifert matrix of 7_1
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it t^-2-t^-1+1-t+t^2 | 7 First homology of the double branched cover of 7_1 Z/7 | -6 | 6 | ||||||||||||||||||||||||||||||||||||
7_2 | 1 detected by an unknotting move | 3-5t+3t^2 Seifert matrix of 7_2
| 1 Generator of the Alexander module (1,0) the Blanchfield form on it 1 | 11 First homology of the double branched cover of 7_2 Z/11 | -2 | 2 | ||||||||||||||||||||||||||||||||||||
7_3 | 2 detected by the signature | 2-3t+3t^2-3t^3+2t^4 Seifert matrix of 7_3
| 1 Generator of the Alexander module (2t^3,0,t^3,1) the Blanchfield form on it -5t^-2+18t^-1-24+18t-5t^2 | 13 First homology of the double branched cover of 7_3 Z/13 | -4 | 4 | ||||||||||||||||||||||||||||||||||||
7_4 | 2 detected by the Lickorish test | 4-7t+4t^2 Seifert matrix of 7_4
| 1 Generator of the Alexander module (0,1) the Blanchfield form on it -2t^-1+4-2t | 15 First homology of the double branched cover of 7_4 Z/15 | -2 | 2 | ||||||||||||||||||||||||||||||||||||
7_5 | 2 detected by the signature | 2-4t+5t^2-4t^3+2t^4 Seifert matrix of 7_5
| 1 Generator of the Alexander module (-t,0,1,1) the Blanchfield form on it 2t^-1-2+2t | 17 First homology of the double branched cover of 7_5 Z/17 | -4 | 4 | ||||||||||||||||||||||||||||||||||||
7_6 | 1 detected by an unknotting move | -1+5t-7t^2+5t^3-t^4 Seifert matrix of 7_6
| 1 Generator of the Alexander module (0,0,1,0) the Blanchfield form on it -2t^-1+3-2t | 19 First homology of the double branched cover of 7_6 Z/19 | -2 | 2 | ||||||||||||||||||||||||||||||||||||
7_7 | 1 detected by an unknotting move | 1-5t+9t^2-5t^3+t^4 Seifert matrix of 7_7
| 1 Generator of the Alexander module (0,0,-1,1) the Blanchfield form on it t^-1-3+t | 21 First homology of the double branched cover of 7_7 Z/21 | 0 | 0 |