Shorthands denote
u_a algebraic unknotting number
Nak Nakanishi index
det determinant
sign signature
max LT maximum absolute value of
Levine-Tristram signatures
Hidden features
Click on to see
algebraic unknotting number how it has been detected
Alexander polynomial a Seifert matrix
(nondegenerate representative in the S-equivalence class)
Nakanishi index generator of the Alexander module,
if Nakanishi index is 1
Determinant H_1 of the double branched cover


Welcome to the
KNOTORIOUS
world wide web page!
set up by Maciej Borodzik mcboro'at'mimuw;edu;pl
and Stefan Friedl sfriedl'at'gmail;com
last update of the webpage 19 Feb 2012
last update of the knotorious data 01 Dec 2011
You may freely contact the authors in case of any questions.

Knot u_a Alexander
polynomial
Nak.
index
det. sign max LT.
11n_1
1

detected by
an unknotting move
-1+7t-11t^2+7t^3-t^4
Seifert matrix of 11n_1
1 0 0 0
1 1 -1 1
1 -1 0 0
0 0 0 1
1
Generator of the Alexander module
(0,-2,1,0)
the Blanchfield form on it
t^-1-5+t
27
First homology
of the double branched cover of 11n_1
Z/27
2 2
11n_2
2

detected by
the signature
-2+8t-12t^2+13t^3-12t^4+8t^5-2t^6
Seifert matrix of 11n_2
1 0 0 0 0 0
-1 -1 0 -1 0 1
0 0 -1 0 0 0
-1 0 -1 -1 0 1
0 0 0 0 -1 -1
1 0 1 0 0 -2
1
Generator of the Alexander module
(0,0,0,0,-t,1)
the Blanchfield form on it
-t^-2+3t^-1-3+3t-t^2
57
First homology
of the double branched cover of 11n_2
Z/57
-4 4
11n_3
1

detected by
an unknotting move
-3+11t-15t^2+11t^3-3t^4
Seifert matrix of 11n_3
1 0 0 0
1 1 -1 1
1 -1 -2 0
0 0 0 1
1
Generator of the Alexander module
(0,1,0,0)
the Blanchfield form on it
-2t^-2+9t^-1-14+9t-2t^2
43
First homology
of the double branched cover of 11n_3
Z/43
2 2
11n_4
1

detected by
an unknotting move
-1+5t-11t^2+15t^3-11t^4+5t^5-t^6
Seifert matrix of 11n_4
1 0 0 0 0 0
-1 -1 0 1 1 1
0 0 -1 -1 -1 -1
1 0 0 0 -1 -1
1 0 0 -1 -2 -1
1 0 0 0 -1 0
1
Generator of the Alexander module
(0,0,-t,1,1,1)
the Blanchfield form on it
-t^-1+3-t
49
First homology
of the double branched cover of 11n_4
Z/49
0 0
11n_5
1

detected by
an unknotting move
1-7t+17t^2-21t^3+17t^4-7t^5+t^6
Seifert matrix of 11n_5
1 0 0 0 0 0
-1 -1 0 1 1 1
0 0 -1 -1 -1 -1
1 0 0 -2 -1 -2
1 0 0 -1 0 -1
1 0 0 -1 -1 -2
1
Generator of the Alexander module
(0,0,1,0,0,0)
the Blanchfield form on it
-t^-1+3-t
71
First homology
of the double branched cover of 11n_5
Z/71
-2 2
11n_6
1

detected by
an unknotting move
-1+3t-3t^2+3t^3-3t^4+3t^5-t^6
Seifert matrix of 11n_6
1 0 0 0 0 0
-1 -1 0 1 1 1
0 0 -1 -1 -1 -1
1 0 0 0 -1 -1
1 0 0 -1 0 -1
1 0 0 0 -1 0
1
Generator of the Alexander module
(0,0,-t,-t,1,0)
the Blanchfield form on it
t^-1-2+t
17
First homology
of the double branched cover of 11n_6
Z/17
0 2
11n_7
1

detected by
an unknotting move
1-6t+16t^2-21t^3+16t^4-6t^5+t^6
Seifert matrix of 11n_7
1 0 0 0 0 0
-1 -1 0 1 1 1
0 0 1 0 0 0
1 0 1 -1 0 -1
1 0 1 0 -1 0
1 0 1 0 0 -1
1
Generator of the Alexander module
(0,0,0,-t,t,1)
the Blanchfield form on it
t^-2-5t^-1+10-5t+t^2
67
First homology
of the double branched cover of 11n_7
Z/67
-2 2
11n_8
2

detected by
the signature
-1+6t-12t^2+15t^3-12t^4+6t^5-t^6
Seifert matrix of 11n_8
1 0 0 0 0 0
-1 -1 0 1 1 1
0 0 1 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 1 0 1
1
Generator of the Alexander module
(0,2-2t+2t^2-t^3,0,-5+8t-9t^2+7t^3-3t^4+t^5,0,0)
the Blanchfield form on it
2t^-2-9t^-1+9-9t+2t^2
53
First homology
of the double branched cover of 11n_8
Z/53
4 4
11n_9
2

detected by
the signature
-1+3t-t^2-4t^3+7t^4-4t^5-t^6+3t^7-t^8
Seifert matrix of 11n_9
-1 -1 -1 -1 0 0 0 0
0 -1 -1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 -1 -1 -1 0 0 0 0
0 -1 0 -1 -1 -1 0 -1
0 -1 0 -1 0 -1 0 0
0 0 0 0 -1 -1 -1 -1
0 -1 0 -1 0 -1 0 -1
1
Generator of the Alexander module
(0,0,0,0,1,1,-t,1)
the Blanchfield form on it
-t^-3+4t^-2-7t^-1+9-7t+4t^2-t^3
5
First homology
of the double branched cover of 11n_9
Z/5
-4 4
11n_10
2

detected by
the signature
-1+7t-15t^2+19t^3-15t^4+7t^5-t^6
Seifert matrix of 11n_10
1 1 0 -1 0 1
0 -2 2 1 0 -1
0 0 1 0 0 0
0 1 -1 0 0 0
1 1 0 -1 1 1
0 -2 1 1 0 0
1
Generator of the Alexander module
(0,1-2t-2t^2,-1-t,t+t^2,-t+2t^2,-1-3t-2t^2-t^3)
the Blanchfield form on it
2t^-2-11t^-1+12-11t+2t^2
65
First homology
of the double branched cover of 11n_10
Z/65
4 4
11n_11
2

detected by
the Lickorish test
1-5t+13t^2-17t^3+13t^4-5t^5+t^6
Seifert matrix of 11n_11
-2 -3 -1 -4 -1 -1
-1 -2 -1 -3 -1 -1
0 0 1 0 0 0
-2 -5 -1 -6 -2 -2
0 0 0 0 -1 0
0 -1 0 -1 0 -1
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
t^-2-4t^-1+8-4t+t^2
55
First homology
of the double branched cover of 11n_11
Z/55
-2 2
11n_12
1

detected by
an unknotting move
1-3t+5t^2-3t^3+t^4
Seifert matrix of 11n_12
-5 -3 -1 -7
-2 -1 -1 -3
0 0 1 0
-6 -4 -1 -9
1
Generator of the Alexander module
(0,0,0,1)
the Blanchfield form on it
t^-1-1+t
13
First homology
of the double branched cover of 11n_12
Z/13
0 0
11n_13
3

detected by
the signature
-1+3t-2t^2+t^3-t^4+t^5-2t^6+3t^7-t^8
Seifert matrix of 11n_13
-1 -1 -1 0 -1 0 0 0
0 -1 -1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 -1 0 -1 0 -1
0 -1 -1 0 -1 0 0 0
0 -1 0 0 -1 -1 0 0
0 0 0 -1 0 -1 -1 -1
0 0 0 0 0 -1 0 -1
1
Generator of the Alexander module
(0,0,0,1,0,0,0,0)
the Blanchfield form on it
-t^-3+3t^-2-2t^-1+1-2t+3t^2-t^3
15
First homology
of the double branched cover of 11n_13
Z/15
-6 6
11n_14
2

detected by
the signature
-1+6t-10t^2+11t^3-10t^4+6t^5-t^6
Seifert matrix of 11n_14
0 2 -1 0 -1 0
1 1 1 0 0 0
0 0 1 0 0 0
1 1 0 1 0 1
0 1 -1 0 0 0
1 1 0 0 0 1
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
t^-2-6t^-1+9-6t+t^2
45
First homology
of the double branched cover of 11n_14
Z/45
4 4
11n_15
2

detected by
the Lickorish test
1-4t+8t^2-9t^3+8t^4-4t^5+t^6
Seifert matrix of 11n_15
-1 0 0 -1 0 -1
0 0 0 0 -1 0
0 0 1 0 0 0
0 0 0 -1 0 -1
0 -1 1 0 -2 0
0 -1 0 0 -1 -1
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
t^-2-4t^-1+7-4t+t^2
35
First homology
of the double branched cover of 11n_15
Z/35
-2 2
11n_16
2

detected by
the signature
-2+7t-7t^2+5t^3-7t^4+7t^5-2t^6
Seifert matrix of 11n_16
-1 -1 -1 0 -1 0
0 -1 -1 0 0 0
0 0 1 0 0 0
0 0 0 -2 0 1
0 -1 -1 0 -1 0
0 -1 0 0 -1 -1
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
t^-3-4t^-2+5t^-1-4+5t-4t^2+t^3
37
First homology
of the double branched cover of 11n_16
Z/37
-4 4
11n_17
1

detected by
an unknotting move
-2+12t-19t^2+12t^3-2t^4
Seifert matrix of 11n_17
0 1 -1 0
1 -2 2 -1
0 0 1 0
1 -2 1 1
1
Generator of the Alexander module
(0,0,0,1)
the Blanchfield form on it
-t^-2+6t^-1-10+6t-t^2
47
First homology
of the double branched cover of 11n_17
Z/47
2 2
11n_18
1

detected by
an unknotting move
2-8t+13t^2-8t^3+2t^4
Seifert matrix of 11n_18
-5 -3 1 -7
-4 -2 1 -6
0 0 1 0
-8 -5 1 -12
1
Generator of the Alexander module
(1,1,0,2)
the Blanchfield form on it
-t^-2+4t^-1-6+4t-t^2
33
First homology
of the double branched cover of 11n_18
Z/33
0 0
11n_19
2

detected by
the signature
-1+2t-t^3+2t^5-t^6
Seifert matrix of 11n_19
1 0 0 0 0 0
-1 0 1 0 -1 0
1 1 -2 1 1 1
-1 -1 1 0 -1 0
-1 0 1 0 0 0
-1 -1 1 -1 -1 0
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
t^-2-2t^-1+1-2t+t^2
5
First homology
of the double branched cover of 11n_19
Z/5
4 4
11n_20
1

detected by
an unknotting move
-2+6t-7t^2+6t^3-2t^4
Seifert matrix of 11n_20
1 0 0 0
-1 0 1 0
1 1 -2 -1
1 1 -1 1
1
Generator of the Alexander module
(0,t,-t,1)
the Blanchfield form on it
t^-1-2+t
23
First homology
of the double branched cover of 11n_20
Z/23
2 2
11n_21
1

detected by
an unknotting move
-1+5t-11t^2+15t^3-11t^4+5t^5-t^6
Seifert matrix of 11n_21
1 0 0 0 0 0
0 -1 0 0 0 0
0 -1 -2 -1 -2 -2
0 -1 -1 0 -1 -1
0 -1 -1 -1 -2 -1
1 -1 -1 -1 -1 0
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
t^-1-1+t
49
First homology
of the double branched cover of 11n_21
Z/49
0 0
11n_22
1

detected by
an unknotting move
1-5t+13t^2-17t^3+13t^4-5t^5+t^6
Seifert matrix of 11n_22
-1 0 0 0 0 -1
0 -1 0 0 0 0
0 -1 -2 1 1 0
0 0 1 0 0 1
0 0 1 -1 0 1
0 0 0 0 0 -1
1
Generator of the Alexander module
(-1,0,t,1,-1,-1)
the Blanchfield form on it
-t^-2+5t^-1-7+5t-t^2
55
First homology
of the double branched cover of 11n_22
Z/55
-2 2
11n_23
2

detected by
the signature
-1+3t-5t^2+4t^3-3t^4+4t^5-5t^6+3t^7-t^8
Seifert matrix of 11n_23
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 -1 0 -1 0 0
-1 -1 0 -1 0 0 1 0
0 0 -1 -1 -1 -1 0 0
-1 -1 0 -1 0 -1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
1
Generator of the Alexander module
(0,0,0,1,0,0,0,0)
the Blanchfield form on it
-t^-3+2t^-2-3t^-1+3-3t+2t^2-t^3
29
First homology
of the double branched cover of 11n_23
Z/29
-4 4
11n_24
1

detected by
an unknotting move
1-3t+5t^2-5t^3+5t^4-3t^5+t^6
Seifert matrix of 11n_24
0 0 0 -1 0 1
0 -1 0 0 0 0
0 -1 -1 -2 -1 0
-1 -1 -1 0 -1 -1
0 -1 -1 -1 0 0
0 0 0 -1 0 0
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
-t^-1+1-t
23
First homology
of the double branched cover of 11n_24
Z/23
-2 2
11n_25
1

detected by
an unknotting move
1-5t+11t^2-13t^3+11t^4-5t^5+t^6
Seifert matrix of 11n_25
0 0 0 -1 0 1
0 -1 0 0 0 0
0 -1 -2 -2 -1 0
-1 -1 -1 0 -1 -1
0 -1 -1 -1 0 0
0 0 0 -1 0 0
1
Generator of the Alexander module
(0,0,1,0,1,0)
the Blanchfield form on it
-t^-1+2-t
47
First homology
of the double branched cover of 11n_25
Z/47
-2 2
11n_26
1

detected by
an unknotting move
-1+5t-9t^2+11t^3-9t^4+5t^5-t^6
Seifert matrix of 11n_26
0 0 1 0 0 -1
0 -1 0 0 0 0
1 -1 -2 0 1 1
-1 0 0 -1 -1 -1
-1 0 1 0 0 -1
0 0 1 0 0 0
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
t^-2-6t^-1+9-6t+t^2
41
First homology
of the double branched cover of 11n_26
Z/41
0 2
11n_27
3

detected by
the signature
1-3t+3t^2-2t^3+t^4-2t^5+3t^6-3t^7+t^8
Seifert matrix of 11n_27
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 0 0 -1 -1 -1
0 0 0 1 0 -1 -1 -1
0 0 -1 0 -1 -1 -1 -1
-1 -1 0 0 0 -1 -1 -1
-1 -1 0 0 0 0 -1 0
-1 -1 0 0 0 0 -1 -1
1
Generator of the Alexander module
(0,0,0,1,0,0,0,0)
the Blanchfield form on it
t^-3-2t^-2+3t^-1-3+3t-2t^2+t^3
19
First homology
of the double branched cover of 11n_27
Z/19
-6 6
11n_28
1

detected by
an unknotting move
1-5t+9t^2-5t^3+t^4
Seifert matrix of 11n_28
-3 -2 -2 0
-3 -3 -2 0
-2 -2 -1 0
-1 -1 -1 1
1
Generator of the Alexander module
(0,0,0,1)
the Blanchfield form on it
-1
21
First homology
of the double branched cover of 11n_28
Z/21
0 0
11n_29
2

detected by
the Lickorish test
-3+13t-19t^2+13t^3-3t^4
Seifert matrix of 11n_29
1 0 -1 0
0 -1 0 0
-1 -1 -2 0
1 0 0 -1
1
Generator of the Alexander module
(0,0,0,1)
the Blanchfield form on it
2t^-1-3+2t
51
First homology
of the double branched cover of 11n_29
Z/51
-2 2
11n_30
2

detected by
the signature
-2+6t-6t^2+5t^3-6t^4+6t^5-2t^6
Seifert matrix of 11n_30
-1 0 0 0 0 0
-1 -1 0 0 0 0
-1 -1 -1 0 0 1
0 0 0 1 0 1
0 0 -1 0 -1 1
1 1 0 0 0 -2
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
-t^-2+t^-1-1+t-t^2
33
First homology
of the double branched cover of 11n_30
Z/33
-4 4
11n_31
1

detected by
an unknotting move
-1+2t+2t^2-5t^3+2t^4+2t^5-t^6
Seifert matrix of 11n_31
-1 0 0 0 0 0
-1 -1 0 0 0 0
-1 -1 -1 -1 0 0
0 0 0 -1 0 0
-1 -1 0 -1 -1 -1
0 0 0 0 0 1
1
Generator of the Alexander module
(0,1,0,0,1,0)
the Blanchfield form on it
1
3
First homology
of the double branched cover of 11n_31
Z/3
-2 2
11n_32
1

detected by
an unknotting move
-1+6t-16t^2+23t^3-16t^4+6t^5-t^6
Seifert matrix of 11n_32
-1 0 0 0 0 0
-1 -1 0 0 0 0
-1 -1 1 -1 0 0
0 0 0 1 0 0
-1 -1 0 -1 1 -1
0 0 0 0 0 -1
1
Generator of the Alexander module
(0,0,-1,0,1,0)
the Blanchfield form on it
-t^-2+3t^-1-6+3t-t^2
69
First homology
of the double branched cover of 11n_32
Z/69
0 0
11n_33
2

detected by
the Lickorish test
1-6t+12t^2-13t^3+12t^4-6t^5+t^6
Seifert matrix of 11n_33
-1 0 0 0 0 0
-1 -1 0 0 0 0
-1 -1 -1 -1 0 0
0 0 0 1 0 0
-1 -1 0 -1 -1 -1
0 0 0 0 0 1
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
t^-2-3t^-1+3-3t+t^2
51
First homology
of the double branched cover of 11n_33
Z/51
-2 2
11n_34
0

detected by
1
Seifert matrix of 11n_34
trivial
0
1
First homology
of the double branched cover of 11n_34
trivial
0 0
11n_35
2

detected by
the signature
-2+10t-20t^2+25t^3-20t^4+10t^5-2t^6
Seifert matrix of 11n_35
-2 -1 -3 -1 -1 -1
-2 -2 -3 -1 -1 -1
-1 -1 -6 -2 -2 -3
0 0 -1 -1 0 -1
-1 -1 -4 -1 -2 -2
0 0 -3 -1 -1 -1
1
Generator of the Alexander module
(1,0,0,0,0,0)
the Blanchfield form on it
-t^-2+4t^-1-5+4t-t^2
89
First homology
of the double branched cover of 11n_35
Z/89
-4 4
11n_36
1

detected by
an unknotting move
1-4t+8t^2-13t^3+15t^4-13t^5+8t^6-4t^7+t^8
Seifert matrix of 11n_36
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 0 0 0 -1 0
0 0 -1 1 0 1 -1 1
0 0 -1 0 -1 0 -1 0
0 0 0 0 0 1 0 0
-1 -1 0 0 0 0 -1 0
0 0 -1 0 0 1 0 1
1
Generator of the Alexander module
(0,0,0,1,1,0,0,0)
the Blanchfield form on it
-t^-3+4t^-2-6t^-1+6-6t+4t^2-t^3
67
First homology
of the double branched cover of 11n_36
Z/67
-2 2
11n_37
2

detected by
the Lickorish test
-1+3t-5t^2+7t^3-5t^4+3t^5-t^6
Seifert matrix of 11n_37
-1 -1 0 0 -1 0
0 0 0 0 -1 0
0 0 1 0 0 1
0 0 0 -1 -1 0
0 -1 1 0 0 1
0 0 0 0 0 1
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
t^-1-1+t
25
First homology
of the double branched cover of 11n_37
Z/25
0 0
11n_38
1

detected by
an unknotting move
-1+t+t^2+t^3-t^4
Seifert matrix of 11n_38
-1 -1 1 0
0 0 1 0
0 1 1 0
0 0 1 -1
1
Generator of the Alexander module
(0,0,0,1)
the Blanchfield form on it
1
3
First homology
of the double branched cover of 11n_38
Z/3
-2 2
11n_39
1

detected by
an unknotting move
2-6t+9t^2-6t^3+2t^4
Seifert matrix of 11n_39
1 0 0 0
1 -2 -1 -2
0 0 0 -1
1 0 -1 -2
1
Generator of the Alexander module
(0,1,0,1)
the Blanchfield form on it
t^-1-2+t
25
First homology
of the double branched cover of 11n_39
Z/25
0 0
11n_40
1

detected by
an unknotting move
2-8t+18t^2-23t^3+18t^4-8t^5+2t^6
Seifert matrix of 11n_40
-2 -1 0 -1 0 0
-2 -2 0 -1 0 0
1 1 0 0 0 1
-1 -1 -1 -2 -1 0
0 0 -1 -1 0 0
-1 -1 0 -1 0 -1
1
Generator of the Alexander module
(0,0,0,1,1,0)
the Blanchfield form on it
-t^-1+2-t
79
First homology
of the double branched cover of 11n_40
Z/79
-2 2
11n_41
2

detected by
the signature
-1+4t-8t^2+9t^3-9t^4+9t^5-8t^6+4t^7-t^8
Seifert matrix of 11n_41
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 0 0 1 0 0
0 0 -1 -1 -1 0 -1 0
-1 -1 -1 0 -1 1 0 1
0 0 0 0 0 1 0 1
-1 -1 -1 0 -1 1 -1 1
0 0 0 0 0 0 0 1
1
Generator of the Alexander module
(-2+2t+2t^2+2t^3-2t^4,-1+2t^3-t^4,-1+t+t^2+t^3-t^4,-t^2-t^3+t^4,t+t^2-t^3,t^2+t^3-t^4,1+3t+t^2-2t^3,0)
the Blanchfield form on it
-14t^-3+123t^-2-286t^-1+361-286t+123t^2-14t^3
53
First homology
of the double branched cover of 11n_41
Z/53
-4 4
11n_42
0

detected by
1
Seifert matrix of 11n_42
trivial
0
1
First homology
of the double branched cover of 11n_42
trivial
0 0
11n_43
2

detected by
the signature
-2+10t-20t^2+25t^3-20t^4+10t^5-2t^6
Seifert matrix of 11n_43
-2 -1 0 -1 -1 0
-2 -2 0 -1 -1 0
0 0 0 -1 -1 0
-1 -1 -1 -2 -1 0
0 0 0 0 -1 0
-1 -1 0 -1 -1 -1
1
Generator of the Alexander module
(0,0,1,0,0,t)
the Blanchfield form on it
2t^-1-3+2t
89
First homology
of the double branched cover of 11n_43
Z/89
-4 4
11n_44
1

detected by
an unknotting move
1-4t+8t^2-13t^3+15t^4-13t^5+8t^6-4t^7+t^8
Seifert matrix of 11n_44
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 0 0 1 0 1
0 0 -1 -1 0 0 -1 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 1
-1 -1 -1 0 1 1 -1 1
0 0 0 0 1 0 0 1
1
Generator of the Alexander module
(0,0,0,1,0,0,0,0)
the Blanchfield form on it
t^-3-4t^-2+7t^-1-9+7t-4t^2+t^3
67
First homology
of the double branched cover of 11n_44
Z/67
-2 2
11n_45
1

detected by
an unknotting move
2-6t+9t^2-6t^3+2t^4
Seifert matrix of 11n_45
0 1 0 1
0 -1 1 -1
0 0 1 -2
1 -2 -1 -2
1
Generator of the Alexander module
(0,0,0,1)
the Blanchfield form on it
t^-1-2+t
25
First homology
of the double branched cover of 11n_45
Z/25
0 0
11n_46
1

detected by
an unknotting move
2-8t+18t^2-23t^3+18t^4-8t^5+2t^6
Seifert matrix of 11n_46
-2 -1 0 0 0 1
-2 -2 0 0 0 1
0 0 2 1 0 2
0 0 1 0 0 1
0 0 1 1 -1 0
0 0 0 0 0 1
1
Generator of the Alexander module
(-3+2t,0,0,0,-2+t,0)
the Blanchfield form on it
4t^-2-10t^-1+17-10t+4t^2
79
First homology
of the double branched cover of 11n_46
Z/79
-2 2
11n_47
2

detected by
the signature
-1+4t-8t^2+9t^3-9t^4+9t^5-8t^6+4t^7-t^8
Seifert matrix of 11n_47
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 0 0 0 -1 -1
0 0 -1 1 0 1 -1 -1
0 0 -1 0 -1 0 -1 -1
0 0 -1 0 0 1 0 0
-1 -1 0 0 0 0 -1 0
-1 -1 0 0 0 0 -1 -1
1
Generator of the Alexander module
(0,0,0,-t,-t,1,0,0)
the Blanchfield form on it
t^-3-2t^-2+2t^-1-2+2t-2t^2+t^3
53
First homology
of the double branched cover of 11n_47
Z/53
-4 4
11n_48
1

detected by
an unknotting move
-1+3t-6t^2+9t^3-6t^4+3t^5-t^6
Seifert matrix of 11n_48
2 1 0 0 1 0
1 0 0 0 1 0
0 1 -1 0 0 1
1 1 0 1 1 1
0 0 0 0 1 0
1 0 0 0 1 -1
1
Generator of the Alexander module
(0,1,t,-t,0,1)
the Blanchfield form on it
-t^-1+2-t
29
First homology
of the double branched cover of 11n_48
Z/29
0 0
11n_49
2

detected by
A(F_2)
-1+3t^2-t^4
Seifert matrix of 11n_49
3 2 0 1
2 1 0 1
0 1 -1 1
2 1 0 0
2
1
First homology
of the double branched cover of 11n_49
0
0 0
11n_50
1

detected by
an unknotting move
2-6t+9t^2-6t^3+2t^4
Seifert matrix of 11n_50
0 1 0 0
2 3 0 2
-1 0 -1 -1
0 0 0 1
1
Generator of the Alexander module
(0,-2,1,0)
the Blanchfield form on it
t^-1-2+t
25
First homology
of the double branched cover of 11n_50
Z/25
0 0
11n_51
1

detected by
an unknotting move
-1+4t-6t^2+7t^3-6t^4+4t^5-t^6
Seifert matrix of 11n_51
-1 -1 0 -1 -1 -1
0 0 0 -1 -1 -1
0 0 -1 0 0 0
0 -1 0 -2 -1 -1
0 0 -1 -1 0 -1
0 0 0 -1 0 0
1
Generator of the Alexander module
(t,0,0,1,0,0)
the Blanchfield form on it
-t^-2+2t^-1+2t-t^2
29
First homology
of the double branched cover of 11n_51
Z/29
0 2
11n_52
1

detected by
an unknotting move
1-6t+14t^2-17t^3+14t^4-6t^5+t^6
Seifert matrix of 11n_52
-1 -1 0 -1 -1 -1
0 -2 0 -1 -2 -2
0 0 1 0 0 0
0 -1 0 0 -1 -1
0 -1 -1 -1 -2 -2
0 -1 0 -1 -1 -2
1
Generator of the Alexander module
(-t,0,0,1,0,0)
the Blanchfield form on it
t^-2-4t^-1+6-4t+t^2
59
First homology
of the double branched cover of 11n_52
Z/59
-2 2
11n_53
1

detected by
an unknotting move
-1+4t-8t^2+11t^3-8t^4+4t^5-t^6
Seifert matrix of 11n_53
-1 -1 0 -1 -1 -1
0 0 0 -1 -1 -1
0 0 -1 0 0 0
0 -1 0 0 -1 -1
0 0 -1 -1 0 -1
0 0 0 -1 0 0
1
Generator of the Alexander module
(0,0,0,-t,1,1)
the Blanchfield form on it
-t^-2+4t^-1-6+4t-t^2
37
First homology
of the double branched cover of 11n_53
Z/37
0 0
11n_54
1

detected by
an unknotting move
1-4t+10t^2-13t^3+10t^4-4t^5+t^6
Seifert matrix of 11n_54
-1 -1 0 -1 0 -1
0 0 0 -1 0 -1
0 0 -1 0 -1 -1
0 -1 0 -2 0 -1
0 0 0 0 -1 -1
0 0 0 -1 0 0
1
Generator of the Alexander module
(1,0,0,0,0,0)
the Blanchfield form on it
t^-1-1+t
43
First homology
of the double branched cover of 11n_54
Z/43
-2 2
11n_55
1

detected by
an unknotting move
-1+6t-14t^2+19t^3-14t^4+6t^5-t^6
Seifert matrix of 11n_55
-1 -1 0 -1 0 -1
0 -2 0 -1 0 -2
0 0 1 0 0 -1
0 -1 0 0 0 -1
0 0 1 0 1 -1
0 -1 0 -1 0 -2
1
Generator of the Alexander module
(0,0,1,0,0,0)
the Blanchfield form on it
t^-2-4t^-1+5-4t+t^2
61
First homology
of the double branched cover of 11n_55
Z/61
0 0
11n_56
1

detected by
an unknotting move
1-4t+8t^2-9t^3+8t^4-4t^5+t^6
Seifert matrix of 11n_56
-1 -1 0 -1 0 -1
0 0 0 -1 0 -1
0 0 -1 0 -1 -1
0 -1 0 0 0 -1
0 0 0 0 -1 -1
0 0 0 -1 0 0
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
t^-2-2t^-1+3-2t+t^2
35
First homology
of the double branched cover of 11n_56
Z/35
-2 2
11n_57
3

detected by
the signature
1-3t+2t^2+t^3-3t^4+t^5+2t^6-3t^7+t^8
Seifert matrix of 11n_57
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 -1 0 0 -1 -1
-1 -1 0 -1 0 0 0 -1
0 0 0 0 1 0 0 -1
0 0 -1 -1 0 -1 -1 -1
-1 -1 0 -1 0 0 -1 -1
-1 -1 0 0 0 0 0 -1
1
Generator of the Alexander module
(0,0,0,0,t,0,0,1)
the Blanchfield form on it
t^-3-t^-2+1-t^2+t^3
7
First homology
of the double branched cover of 11n_57
Z/7
-6 6
11n_58
2

detected by
the Lickorish test
1-4t+8t^2-9t^3+8t^4-4t^5+t^6
Seifert matrix of 11n_58
1 0 0 1 0 0
0 -1 0 0 0 0
0 -1 -2 -2 0 -1
0 -1 -1 0 0 -1
1 0 0 1 1 0
0 -1 -1 -1 0 0
1
Generator of the Alexander module
(0,0,1,0,-1,1)
the Blanchfield form on it
-t^-2+3t^-1-5+3t-t^2
35
First homology
of the double branched cover of 11n_58
Z/35
2 2
11n_59
2

detected by
the signature
-1+6t-12t^2+15t^3-12t^4+6t^5-t^6
Seifert matrix of 11n_59
-1 0 0 0 -1 -1
0 -1 0 0 0 0
0 -1 -2 0 0 1
-1 0 0 -1 -1 -1
0 0 0 0 -1 -1
0 0 1 0 0 0
1
Generator of the Alexander module
(0,1,-2t,0,0,t)
the Blanchfield form on it
-t^-2+4t^-1-4+4t-t^2
53
First homology
of the double branched cover of 11n_59
Z/53
-4 4
11n_60
1

detected by
an unknotting move
1-3t+4t^2-5t^3+5t^4-5t^5+4t^6-3t^7+t^8
Seifert matrix of 11n_60
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 0 0 0 -1 0
0 0 0 1 0 0 -1 0
0 0 0 1 1 0 -1 1
0 0 -1 0 0 -1 -1 0
-1 -1 0 0 0 0 -1 0
0 0 0 1 0 0 -1 1
1
Generator of the Alexander module
(0,0,0,1,0,0,0,0)
the Blanchfield form on it
-t^-3+3t^-2-2t^-1+1-2t+3t^2-t^3
31
First homology
of the double branched cover of 11n_60
Z/31
-2 2
11n_61
2

detected by
the signature
-1+3t-4t^2+t^3+t^4+t^5-4t^6+3t^7-t^8
Seifert matrix of 11n_61
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 0 -1 0 0 -1
0 0 0 1 0 0 0 0
-1 -1 0 0 -1 0 0 0
0 0 -1 0 -1 -1 0 -1
0 0 0 1 0 0 1 0
-1 -1 0 1 -1 0 1 -1
1
Generator of the Alexander module
(0,0,1+t^2,0,0,t^2,0,0)
the Blanchfield form on it
-t^-3+2t^-2-2t^-1-2t+2t^2-t^3
17
First homology
of the double branched cover of 11n_61
Z/17
-4 4
11n_62
1

detected by
an unknotting move
2-8t+13t^2-8t^3+2t^4
Seifert matrix of 11n_62
1 2 2 2
1 1 2 2
3 3 2 3
2 2 2 3
1
Generator of the Alexander module
(0,0,1,1)
the Blanchfield form on it
-t^-1+2-t
33
First homology
of the double branched cover of 11n_62
Z/33
0 0
11n_63
1

detected by
an unknotting move
-2+10t-15t^2+10t^3-2t^4
Seifert matrix of 11n_63
-2 0 0 1
0 -1 0 0
0 -1 -2 1
0 0 1 0
1
Generator of the Alexander module
(1,0,1,0)
the Blanchfield form on it
-t^-1+2-t
39
First homology
of the double branched cover of 11n_63
Z/39
-2 2
11n_64
2

detected by
the signature
-2+5t-3t^2+t^3-3t^4+5t^5-2t^6
Seifert matrix of 11n_64
-1 0 0 0 0 0
-1 -1 0 0 0 0
-1 -1 -1 0 -1 0
0 0 -1 -1 -1 0
-1 -1 0 0 -1 0
0 0 0 0 1 2
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
-t^-3+2t^-2-t^-1-t+2t^2-t^3
21
First homology
of the double branched cover of 11n_64
Z/21
-4 4
11n_65
1

detected by
an unknotting move
3-8t+11t^2-8t^3+3t^4
Seifert matrix of 11n_65
0 1 2 1
0 0 2 1
1 1 3 1
1 1 2 2
1
Generator of the Alexander module
(0,0,1,1)
the Blanchfield form on it
t^-1-2+t
33
First homology
of the double branched cover of 11n_65
Z/33
0 2
11n_66
1

detected by
an unknotting move
1-7t+18t^2-23t^3+18t^4-7t^5+t^6
Seifert matrix of 11n_66
-1 0 0 0 0 0
-1 -1 0 0 0 0
0 0 -1 0 0 -1
0 0 0 1 0 0
1 1 0 -1 -1 0
-1 -1 0 1 -1 1
1
Generator of the Alexander module
(0,0,1,0,0,0)
the Blanchfield form on it
-t^-2+3t^-1-3+3t-t^2
75
First homology
of the double branched cover of 11n_66
Z/75
-2 2
11n_67
1

detected by
an unknotting move
-2+5t-2t^2
Seifert matrix of 11n_67
0 -2
-1 -5
1
Generator of the Alexander module
(1,-3t+2t^2)
the Blanchfield form on it
-3t^-1+8-3t
9
First homology
of the double branched cover of 11n_67
Z/9
0 0
11n_68
2

detected by
the Lickorish test
-4+16t-23t^2+16t^3-4t^4
Seifert matrix of 11n_68
-5 -4 -6 -4
-5 -5 -6 -4
-5 -5 -8 -6
-4 -4 -7 -5
1 or 2
63
First homology
of the double branched cover of 11n_68
Z/63
-2 2
11n_69
2

detected by
the signature
-2+7t-9t^2+9t^3-9t^4+7t^5-2t^6
Seifert matrix of 11n_69
-1 0 0 0 0 0
-1 -1 0 0 0 0
0 0 1 0 0 -1
0 0 0 -1 1 -1
1 1 0 0 -2 1
-1 -1 0 0 0 -1
1 or 2
45
First homology
of the double branched cover of 11n_69
Z/45
-4 4
11n_70
2

detected by
the signature
-1+2t-2t^2+3t^3-2t^4+2t^5-t^6
Seifert matrix of 11n_70
-1 0 -1 0 0 -1
0 -1 0 -1 0 0
0 0 0 0 0 -1
0 0 0 -1 0 -1
0 -1 0 -1 -1 0
0 0 -1 0 0 0
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
-t^-2+2t^-1-1+2t-t^2
13
First homology
of the double branched cover of 11n_70
Z/13
-4 4
11n_71
2

detected by
the Nakanishi index
2-7t+14t^2-17t^3+14t^4-7t^5+2t^6
Seifert matrix of 11n_71
-1 -1 -1 -1 -1 -1
0 0 -1 -1 -1 -1
0 -1 -2 -1 -2 -1
0 -1 -1 -2 -1 -1
0 -1 -1 -1 -2 -1
0 0 -1 -1 -1 0
2
63
First homology
of the double branched cover of 11n_71
Z/21+Z/3
-2 2
11n_72
2

detected by
the Nakanishi index
-2+9t-18t^2+23t^3-18t^4+9t^5-2t^6
Seifert matrix of 11n_72
-1 -1 -1 -1 -1 -1
0 -2 -1 -1 -1 -2
0 -1 -2 -1 -2 -1
0 -1 -1 0 -1 -1
0 -1 -1 -1 -2 -1
0 -1 -1 -1 -1 -2
2
81
First homology
of the double branched cover of 11n_72
Z/27+Z/3
-4 4
11n_73
2

detected by
the Nakanishi index
1-2t+3t^2-2t^3+t^4
Seifert matrix of 11n_73
0 -1 0 1
-1 -2 1 1
0 0 0 -1
0 0 -1 0
2
9
First homology
of the double branched cover of 11n_73
Z/3+Z/3
0 0
11n_74
2

detected by
the Nakanishi index
1-2t+3t^2-2t^3+t^4
Seifert matrix of 11n_74
0 0 -1 1
0 0 0 -1
-1 1 -2 1
0 -1 0 0
2
9
First homology
of the double branched cover of 11n_74
Z/3+Z/3
0 0
11n_75
2

detected by
the Nakanishi index
2-7t+14t^2-17t^3+14t^4-7t^5+2t^6
Seifert matrix of 11n_75
-1 -1 -1 -1 -1 -1
0 0 -1 -1 -1 -1
0 -1 0 -1 -1 -1
0 -1 -1 0 -1 -1
0 -1 0 -1 0 -1
0 0 -1 -1 -1 0
2
63
First homology
of the double branched cover of 11n_75
Z/21+Z/3
2 2
11n_76
2

detected by
the Nakanishi index
-1+3t-6t^2+8t^3-9t^4+8t^5-6t^6+3t^7-t^8
Seifert matrix of 11n_76
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 1 0 1 0 1 0
-1 -1 1 1 1 1 1 0
0 0 0 0 1 0 0 0
-1 -1 1 0 1 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
2
45
First homology
of the double branched cover of 11n_76
Z/15+Z/3
4 4
11n_77
3

detected by
the signature
-1+t+2t^2-8t^3+11t^4-8t^5+2t^6+t^7-t^8
Seifert matrix of 11n_77
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 -1 0 -1 1 0
-1 -1 0 -1 0 0 1 0
0 0 -1 -1 -1 -1 0 0
-1 -1 0 -1 0 -1 1 0
0 0 0 0 0 0 -1 0
0 0 0 0 0 0 -1 -1
2
27
First homology
of the double branched cover of 11n_77
Z/9+Z/3
-6 6
11n_78
2

detected by
the Nakanishi index
-1+3t-6t^2+8t^3-9t^4+8t^5-6t^6+3t^7-t^8
Seifert matrix of 11n_78
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 -1 0 -1 1 0
-1 -1 0 -1 0 0 1 0
0 0 -1 -1 -1 -1 0 0
-1 -1 0 -1 0 -1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
2
45
First homology
of the double branched cover of 11n_78
Z/15+Z/3
-4 4
11n_79
2

detected by
the Lickorish test
-2+4t-3t^2+4t^3-2t^4
Seifert matrix of 11n_79
-1 0 -1 -1
0 -2 0 1
0 0 0 -1
0 0 -1 0
1
Generator of the Alexander module
(0,1,0,0)
the Blanchfield form on it
t^-2-2t^-1+2-2t+t^2
15
First homology
of the double branched cover of 11n_79
Z/15
-2 2
11n_80
2

detected by
the Lickorish test
-1+t+5t^2-9t^3+5t^4+t^5-t^6
Seifert matrix of 11n_80
1 0 0 0 0 0
1 0 -1 0 -1 0
1 -1 -2 0 -1 0
0 1 0 1 1 0
1 0 -1 0 0 0
0 1 0 1 1 1
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
t^-2-2t^-1+1-2t+t^2
15
First homology
of the double branched cover of 11n_80
Z/15
2 2
11n_81
3

detected by
the signature
1-3t+4t^2-4t^3+3t^4-4t^5+4t^6-3t^7+t^8
Seifert matrix of 11n_81
-1 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 -1 -1 -1 0 -1 0 -1
-1 -1 0 -1 0 -1 0 0
0 0 -1 -1 -1 0 -1 -1
0 0 0 0 0 1 0 0
0 0 -1 -1 0 0 -1 -1
-1 -1 0 -1 0 -1 0 -1
2
27
First homology
of the double branched cover of 11n_81
Z/9+Z/3
-6 6
11n_82
1

detected by
an unknotting move
1-3t+4t^2-3t^3+4t^4-3t^5+t^6
Seifert matrix of 11n_82
0 0 0 0 -1 0
-1 -1 -1 0 -1 0
-1 0 0 0 -1 0
-1 -1 -1 -1 -1 0
-1 0 -1 0 0 0
0 -1 -1 -1 -1 -1
1
Generator of the Alexander module
(0,1,1,1,1,-t)
the Blanchfield form on it
1
19
First homology
of the double branched cover of 11n_82
Z/19
-2 2
11n_83
2

detected by
A(F_2)
3-12t+19t^2-12t^3+3t^4
Seifert matrix of 11n_83
-1 -3 1 -1
-2 -3 2 -2
1 1 0 0
-1 -3 1 -2
2
49
First homology
of the double branched cover of 11n_83
Z/49
0 0
11n_84
1

detected by
an unknotting move
-2+9t-13t^2+9t^3-2t^4
Seifert matrix of 11n_84
3 -1 2 0
0 1 -1 0
2 -1 1 0
1 0 1 1
1
Generator of the Alexander module
(0,1,0,-2+t)
the Blanchfield form on it
-1
35
First homology
of the double branched cover of 11n_84
Z/35
2 2
11n_85
1

detected by
an unknotting move
-1+5t-10t^2+13t^3-10t^4+5t^5-t^6
Seifert matrix of 11n_85
-1 -1 -1 -1 1 0
0 0 -1 -1 1 0
0 0 -1 -1 0 0
0 0 0 1 0 0
0 1 1 1 -2 1
0 -1 -1 0 1 0
1
Generator of the Alexander module
(1,0,0,0,-t,t)
the Blanchfield form on it
2t^-2-8t^-1+11-8t+2t^2
45
First homology
of the double branched cover of 11n_85
Z/45
0 0
11n_86
1

detected by
an unknotting move
-1+4t-7t^2+9t^3-7t^4+4t^5-t^6
Seifert matrix of 11n_86
-1 0 0 0 -1 -1
-1 -1 0 0 0 -1
0 0 0 0 0 -1
0 0 0 1 0 0
0 0 -1 0 0 -1
0 0 -1 1 -1 -2
1
Generator of the Alexander module
(0,1,0,0,0,0)
the Blanchfield form on it
1
33
First homology
of the double branched cover of 11n_86
Z/33
0 2
11n_87
1

detected by
an unknotting move
1-5t+12t^2-15t^3+12t^4-5t^5+t^6
Seifert matrix of 11n_87
1 0 0 0 0 0
-1 -1 -1 0 -1 0
-1 0 0 -1 0 0
0 0 0 1 -1 0
-1 0 -1 -1 1 1
0 0 0 0 0 1
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
t^-1-2+t
51
First homology
of the double branched cover of 11n_87
Z/51
2 2
11n_88
3

detected by
the signature
-1+3t-2t^2+t^4-2t^6+3t^7-t^8
Seifert matrix of 11n_88
-1 -1 -1 -1 -1 -1 0 0
0 -1 -1 -1 0 -1 0 0
0 0 -1 -1 0 0 0 0
0 0 0 1 0 0 0 0
0 -1 -1 -1 -1 -1 0 0
0 0 -1 -1 0 -1 0 0
0 -1 -1 0 -1 -1 -1 0
0 0 0 0 0 0 -1 -1
1
Generator of the Alexander module
(0,0,0,1+t^2-t^3,t^2+t^4-t^5,0,0,-t-t^4+t^5)
the Blanchfield form on it
x
11
First homology
of the double branched cover of 11n_88
Z/11
-6 6
11n_89
2

detected by
the signature
-1+7t-14t^2+17t^3-14t^4+7t^5-t^6
Seifert matrix of 11n_89
0 2 2 -1 -1 2
1 1 0 1 0 0
1 1 1 1 0 1
0 0 0 1 0 0
0 1 1 -1 0 1
1 1 0 1 0 1
1
Generator of the Alexander module
(2-2t-t^2+2t^3,0,-t^2+t^3,-t^2,-1+t+t^2-t^3,t)
the Blanchfield form on it
-209t^-2+344t^-1-365+344t-209t^2
61
First homology
of the double branched cover of 11n_89
Z/61
4 4
11n_90
2

detected by
the signature
-2+7t-8t^2+7t^3-8t^4+7t^5-2t^6
Seifert matrix of 11n_90
-1 1 -1 -1 0 0
0 -2 1 1 0 0
0 0 -1 -1 0 0
0 0 0 1 0 0
0 1 -1 0 -1 0
0 0 0 0 -1 -1
2
41
First homology
of the double branched cover of 11n_90
Z/41
-4 4
11n_91
2

detected by
A(F_2)
-1+8t-13t^2+8t^3-t^4
Seifert matrix of 11n_91
5 6 1 6
4 5 2 4
0 0 1 0
6 7 2 7
2
31
First homology
of the double branched cover of 11n_91
Z/31
2 2
11n_92
2

detected by
the Lickorish test
1-3t+3t^2-t^3+3t^4-3t^5+t^6
Seifert matrix of 11n_92
-1 -1 0 0 0 -1
0 0 -1 0 -1 -1
0 0 0 0 0 -1
0 0 0 1 0 0
0 0 -1 0 0 -1
0 -1 -1 1 -1 -2
1 or 2
15
First homology
of the double branched cover of 11n_92
Z/15
2 2
11n_93
3

detected by
the signature
3-7t+9t^2-9t^3+9t^4-7t^5+3t^6
Seifert matrix of 11n_93
-1 0 -1 -1 0 -1
0 -1 0 -1 -1 -1
0 0 -2 -1 0 -1
0 0 -2 -2 0 -1
0 0 -1 -1 -1 -1
0 0 -1 -1 0 -2
1 or 2
47
First homology
of the double branched cover of 11n_93
Z/47
-6 6
11n_94
1

detected by
an unknotting move
-1+6t-13t^2+17t^3-13t^4+6t^5-t^6
Seifert matrix of 11n_94
-1 0 -1 -1 0 -1
0 1 0 -1 0 -1
0 0 -2 -1 0 -1
0 0 -2 -2 0 -1
0 1 -1 -1 1 -1
0 0 -1 -1 0 0
1
Generator of the Alexander module
(1,0,0,0,1,0)
the Blanchfield form on it
t^-2-4t^-1+6-4t+t^2
57
First homology
of the double branched cover of 11n_94
Z/57
0 2
11n_95
2

detected by
the signature
-1+5t-7t^2+7t^3-7t^4+5t^5-t^6
Seifert matrix of 11n_95
-1 0 -1 -1 0 -1
0 -1 0 -1 -1 -1
0 0 -2 -1 0 -1
0 0 -2 -2 0 -1
0 0 -1 -1 -1 -1
0 0 -1 -1 0 0
1 or 2
33
First homology
of the double branched cover of 11n_95
Z/33
-4 4
11n_96
1

detected by
an unknotting move
1-2t+t^2+t^3+t^4-2t^5+t^6
Seifert matrix of 11n_96
-1 0 -1 -1 0 -1
0 -1 0 -1 -1 -1
0 0 0 0 0 -1
0 0 -1 0 0 -1
0 0 -1 -1 -1 -1
0 0 -1 -1 0 0
1
Generator of the Alexander module
(0,1,0,0,0,0)
the Blanchfield form on it
1
7
First homology
of the double branched cover of 11n_96
Z/7
-2 2
11n_97
1

detected by
an unknotting move
-2+5t-2t^2
Seifert matrix of 11n_97
7 2
1 0
1
Generator of the Alexander module
(4-2t,1)
the Blanchfield form on it
-1
9
First homology
of the double branched cover of 11n_97
Z/9
0 0
11n_98
1

detected by
an unknotting move
-1+7t-16t^2+21t^3-16t^4+7t^5-t^6
Seifert matrix of 11n_98
1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 1 1 1
-1 -1 0 -1 -1 -1
-1 -1 0 0 -1 0
-1 -1 0 0 -1 -1
1
Generator of the Alexander module
(0,-1-2t,1-t-3t^2,2+t+2t^2,-t+2t^2,1+t+2t^2)
the Blanchfield form on it
t^-1-2+t
69
First homology
of the double branched cover of 11n_98
Z/69
0 2
11n_99
1

detected by
an unknotting move
-3+10t-13t^2+10t^3-3t^4
Seifert matrix of 11n_99
-3 -4 -2 -4
-3 -2 -1 -3
-1 -1 0 -1
-3 -2 -1 -2
1
Generator of the Alexander module
(1,0,0,0)
the Blanchfield form on it
-t^-2+4t^-1-6+4t-t^2
39
First homology
of the double branched cover of 11n_99
Z/39
2 2
11n_100
1

detected by
an unknotting move
2-11t+19t^2-11t^3+2t^4
Seifert matrix of 11n_100
1 0 0 0
0 -1 0 0
1 0 -2 -1
1 1 0 1
1
Generator of the Alexander module
(0,0,-1,-1)
the Blanchfield form on it
t^-1-2+t
45
First homology
of the double branched cover of 11n_100
Z/45
0 0
11n_101
1

detected by
an unknotting move
-2+10t-15t^2+10t^3-2t^4
Seifert matrix of 11n_101
1 0 0 0
0 1 0 0
1 0 1 -1
1 1 0 -2
1
Generator of the Alexander module
(0,0,1,0)
the Blanchfield form on it
-1
39
First homology
of the double branched cover of 11n_101
Z/39
2 2
11n_102
1

detected by
an unknotting move
-1+t+t^2+t^3-t^4
Seifert matrix of 11n_102
1 0 0 0
0 -1 0 0
1 0 1 -1
1 1 0 1
1
Generator of the Alexander module
(0,1,2t,1)
the Blanchfield form on it
3t^-1-7+3t
3
First homology
of the double branched cover of 11n_102
Z/3
2 2
11n_103
2

detected by
the signature
-1+7t-15t^2+19t^3-15t^4+7t^5-t^6
Seifert matrix of 11n_103
-1 0 -1 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
-1 0 0 1 1 0
0 0 0 0 1 0
0 1 1 0 0 1
1 or 2
65
First homology
of the double branched cover of 11n_103
Z/65
4 4
11n_104
3

detected by
the signature
-1+3t-2t^2-2t^3+5t^4-2t^5-2t^6+3t^7-t^8
Seifert matrix of 11n_104
-1 0 0 0 0 0 0 0
0 1 0 0 0 -1 0 0
-1 0 -1 0 0 0 0 0
-1 0 -1 -1 -1 0 0 -1
-1 0 -1 0 -1 0 0 0
0 0 0 -1 -1 -1 -1 -1
0 0 0 -1 -1 0 -1 -1
-1 0 -1 0 -1 0 0 -1
1
Generator of the Alexander module
(0,1+2t-3t^2+t^3,1-t,0,0,0,0,0)
the Blanchfield form on it
-2t^-3+3t^-2+2t^-1-4+2t+3t^2-2t^3
3
First homology
of the double branched cover of 11n_104
Z/3
-6 6
11n_105
2

detected by
the signature
-1+7t-16t^2+21t^3-16t^4+7t^5-t^6
Seifert matrix of 11n_105
-2 0 -1 -1 0 -1
0 -1 0 0 -1 0
-2 0 -2 -1 0 -1
0 0 0 -1 0 0
0 0 0 0 -1 0
-1 1 -1 -1 1 0
1
Generator of the Alexander module
(1,0,0,0,0,0)
the Blanchfield form on it
2t^-1-3+2t
69
First homology
of the double branched cover of 11n_105
Z/69
-4 4
11n_106
1

detected by
an unknotting move
1-3t+6t^2-7t^3+6t^4-3t^5+t^6
Seifert matrix of 11n_106
0 1 0 1 -1 1
0 0 -1 -1 0 -1
0 0 -1 0 0 0
1 -2 -1 -2 1 -2
0 1 0 1 0 1
0 0 -1 -1 0 0
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
-t^-2+4t^-1-6+4t-t^2
27
First homology
of the double branched cover of 11n_106
Z/27
2 2
11n_107
2

detected by
the signature
1-3t+4t^2-2t^3+t^4-2t^5+4t^6-3t^7+t^8
Seifert matrix of 11n_107
-1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
-1 0 -1 0 0 0 0 0
-1 0 -1 -1 -1 0 0 -1
-1 0 -1 0 -1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 -1 -1 1 -1 -1
-1 0 -1 0 -1 0 0 -1
1
Generator of the Alexander module
(0,0,0,0,1,0,0,0)
the Blanchfield form on it
t^-3-3t^-2+5t^-1-5+5t-3t^2+t^3
21
First homology
of the double branched cover of 11n_107
Z/21
-4 4
11n_108
2

detected by
the signature
-1+8t-17t^2+21t^3-17t^4+8t^5-t^6
Seifert matrix of 11n_108
2 1 1 1 1 1
1 2 1 1 2 1
0 0 1 0 0 0
0 0 0 1 0 0
1 1 1 1 2 1
0 1 0 1 1 0
1 or 2
73
First homology
of the double branched cover of 11n_108
Z/73
4 4
11n_109
2

detected by
the signature
-1+7t-13t^2+15t^3-13t^4+7t^5-t^6
Seifert matrix of 11n_109
1 0 0 1 0 0
-1 0 -1 0 -1 -1
-1 0 0 0 -1 0
0 0 0 1 0 0
-1 -1 -1 1 0 -1
-1 0 -1 0 -1 0
1 or 2
57
First homology
of the double branched cover of 11n_109
Z/57
4 4
11n_110
1

detected by
an unknotting move
-1+4t-9t^2+13t^3-9t^4+4t^5-t^6
Seifert matrix of 11n_110
2 0 2 1 0 2
0 -1 -1 0 -1 -1
1 0 2 1 0 2
0 0 1 0 0 1
1 0 2 1 1 2
1 0 3 1 0 2
1
Generator of the Alexander module
(0,3-2t,0,0,-1+t,0)
the Blanchfield form on it
t^-1-2+t
41
First homology
of the double branched cover of 11n_110
Z/41
0 0
11n_111
1

detected by
an unknotting move
-1+t+3t^2-5t^3+3t^4+t^5-t^6
Seifert matrix of 11n_111
0 0 0 0 -1 0
-1 -1 -1 0 -1 -1
-1 0 -1 0 -1 0
-1 0 0 -1 -1 0
-2 -1 -1 0 -1 -1
-1 0 -1 0 -1 -1
1
Generator of the Alexander module
(0,1,0,0,1,0)
the Blanchfield form on it
1
7
First homology
of the double branched cover of 11n_111
Z/7
-2 2
11n_112
1

detected by
an unknotting move
1-5t+13t^2-17t^3+13t^4-5t^5+t^6
Seifert matrix of 11n_112
-1 -1 -1 -1 0 -1
0 -2 -2 -1 0 -1
0 -1 -2 -1 0 -1
0 -2 -2 -2 0 -1
0 -1 0 -1 1 -1
0 -1 -1 -1 0 0
1
Generator of the Alexander module
(-t,0,0,0,0,1)
the Blanchfield form on it
-t^-1+2-t
55
First homology
of the double branched cover of 11n_112
Z/55
-2 2
11n_113
2

detected by
the Lickorish test
-1+9t-15t^2+9t^3-t^4
Seifert matrix of 11n_113
1 1 0 0
0 1 0 0
-1 1 0 -1
-1 0 -1 1
1 or 2
35
First homology
of the double branched cover of 11n_113
Z/35
2 2
11n_114
1

detected by
an unknotting move
3-13t+21t^2-13t^3+3t^4
Seifert matrix of 11n_114
2 1 1 1
1 1 2 1
2 2 1 2
1 2 2 1
1
Generator of the Alexander module
(0,1,3,t)
the Blanchfield form on it
15t^-1-27+15t
53
First homology
of the double branched cover of 11n_114
Z/53
0 0
11n_115
1

detected by
an unknotting move
-1+6t-18t^2+27t^3-18t^4+6t^5-t^6
Seifert matrix of 11n_115
1 0 0 0 0 0
-1 -1 0 -1 1 -1
0 0 1 0 0 0
-1 0 0 -1 1 0
0 0 -1 0 -1 -1
0 0 1 0 0 1
1
Generator of the Alexander module
(4+10t-2t^2+179t^3-32t^4-568t^5+527t^6-24t^7-178t^8+174t^9-96t^10+20t^11,-2+36t^2-160t^3+499t^4+807t^5-2575t^6+1780t^7+112t^8-1010t^9+808t^10-292t^11+40t^12,0,-8+16t-64t^2-78t^3+578t^4-666t^5+216t^6+164t^7-308t^8+192t^9-40t^10,-5+9t-53t^2+38t^3+181t^4-220t^5+1249t^6-2355t^7+1190t^8+504t^9-954t^10+65
the Blanchfield form on it
x
77
First homology
of the double branched cover of 11n_115
Z/77
0 0
11n_116
1

detected by
an unknotting move
-1+3t^2-t^4
Seifert matrix of 11n_116
1 1 0 0
0 1 0 0
-1 1 0 -1
-1 0 -1 -2
1
Generator of the Alexander module
(0,0,1,1)
the Blanchfield form on it
t^-1-2+t
1
First homology
of the double branched cover of 11n_116
0
0 0
11n_117
2

detected by
the Lickorish test
-3+9t-11t^2+9t^3-3t^4
Seifert matrix of 11n_117
0 0 -1 0
-1 -1 -1 0
-2 0 -1 -1
-1 0 -1 -2
1
Generator of the Alexander module
(0,-1+2t,0,3-2t)
the Blanchfield form on it
-16t^-3+80t^-2-171t^-1+214-171t+80t^2-16t^3
35
First homology
of the double branched cover of 11n_117
Z/35
-2 2
11n_118
2

detected by
the signature
-1+4t-4t^2+3t^3-4t^4+4t^5-t^6
Seifert matrix of 11n_118
-1 0 0 0 0 0
-1 -1 -1 0 0 0
-1 0 -1 0 0 0
1 1 1 -2 1 -1
0 -1 0 1 0 1
0 1 0 -2 1 -2
1 or 2
21
First homology
of the double branched cover of 11n_118
Z/21
-4 4
11n_119
1

detected by
an unknotting move
-1+6t-16t^2+23t^3-16t^4+6t^5-t^6
Seifert matrix of 11n_119
-1 0 0 0 0 0
0 0 0 -1 -1 0
-1 0 -1 0 0 0
1 -1 1 0 0 0
0 -1 0 -1 0 0
1 -1 1 0 0 1
1
Generator of the Alexander module
(0,0,0,1,1,1)
the Blanchfield form on it
t^-2-4t^-1+6-4t+t^2
69
First homology
of the double branched cover of 11n_119
Z/69
0 0
11n_120
1

detected by
an unknotting move
-1+4t-7t^2+8t^3-7t^4+8t^5-7t^6+4t^7-t^8
Seifert matrix of 11n_120
-1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
-1 0 -1 0 0 0 0 0
-1 0 -1 -1 0 0 -1 0
0 1 0 -1 1 -1 -1 1
0 0 0 -1 0 -1 -1 0
-1 0 -1 0 0 0 -1 0
0 1 0 -1 0 -1 0 1
1
Generator of the Alexander module
(0,0,0,0,0,0,0,1)
the Blanchfield form on it
-t^-1+1-t
47
First homology
of the double branched cover of 11n_120
Z/47
-2 2
11n_121
2

detected by
the signature
-1+6t-10t^2+11t^3-10t^4+6t^5-t^6
Seifert matrix of 11n_121
1 0 0 0 0 0
0 1 0 0 0 0
0 -1 1 0 0 0
1 0 1 1 1 1
-1 -1 0 0 -1 0
0 -1 1 0 0 1
1 or 2
45
First homology
of the double branched cover of 11n_121
Z/45
4 4
11n_122
1

detected by
an unknotting move
-2+7t-9t^2+7t^3-2t^4
Seifert matrix of 11n_122
5 4 0 2
2 1 0 1
2 1 1 1
1 1 0 1
1 or 2
27
First homology
of the double branched cover of 11n_122
Z/27
2 2
11n_123
1

detected by
an unknotting move
3-14t+23t^2-14t^3+3t^4
Seifert matrix of 11n_123
0 -1 0 -2
-2 -1 0 -3
1 1 -1 2
-4 -3 1 -6
1
Generator of the Alexander module
(30-12t-24t^2+12t^3,-20+8t+16t^2-8t^3,4-2t,-5+2t-8t^2+4t^3)
the Blanchfield form on it
-3712t^-4+14700t^-3-10166t^-2-35115t^-1+67282-35115t-10166t^2+14700t^3-3712t^4
57
First homology
of the double branched cover of 11n_123
Z/57
0 0
11n_124
1

detected by
an unknotting move
1-6t+14t^2-17t^3+14t^4-6t^5+t^6
Seifert matrix of 11n_124
1 0 0 0 0 0
-1 -1 0 -1 -1 -1
0 0 -1 1 0 1
0 0 0 -1 0 0
-1 0 0 -1 -1 0
0 0 0 0 0 1
1
Generator of the Alexander module
(0,-4+t,1,0,-t,0)
the Blanchfield form on it
t^-2-4t^-1+5-4t+t^2
59
First homology
of the double branched cover of 11n_124
Z/59
-2 2
11n_125
1

detected by
an unknotting move
1-6t+15t^2-19t^3+15t^4-6t^5+t^6
Seifert matrix of 11n_125
-2 -1 -1 0 -1 0
0 -1 -1 0 0 0
0 0 1 0 0 0
-1 0 0 -1 0 0
-1 -1 0 0 0 0
-1 0 0 0 -1 -1
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
1
63
First homology
of the double branched cover of 11n_125
Z/63
-2 2
11n_126
3

detected by
the signature
3-6t+4t^2-t^3+4t^4-6t^5+3t^6
Seifert matrix of 11n_126
-1 0 0 0 0 0
0 -2 0 0 -1 1
-1 0 -1 0 0 0
-1 -1 -1 -1 0 0
0 -1 0 0 -2 1
-1 0 -1 0 0 -1
2
27
First homology
of the double branched cover of 11n_126
Z/3+Z/9
-6 6
11n_127
2

detected by
the Lickorish test
1-5t+13t^2-17t^3+13t^4-5t^5+t^6
Seifert matrix of 11n_127
0 0 -1 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
-1 1 0 0 0 0
0 0 0 0 1 1
1 -1 1 -1 0 0
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
-t^-1+1-t
55
First homology
of the double branched cover of 11n_127
Z/55
2 2
11n_128
1

detected by
an unknotting move
1-5t+10t^2-11t^3+10t^4-5t^5+t^6
Seifert matrix of 11n_128
-1 0 -1 0 0 -1
0 0 0 0 0 -1
0 0 -1 0 -1 -1
-1 0 -1 -1 0 -1
0 -1 0 0 0 -1
0 -1 0 0 -1 0
1
Generator of the Alexander module
(0,0,0,-1,1,1)
the Blanchfield form on it
t^-2-5t^-1+9-5t+t^2
43
First homology
of the double branched cover of 11n_128
Z/43
-2 2
11n_129
1

detected by
an unknotting move
1-4t+10t^2-13t^3+10t^4-4t^5+t^6
Seifert matrix of 11n_129
0 -1 0 0 -1 -1
0 0 0 0 0 -1
0 0 -1 -1 0 -1
-1 -1 0 0 -1 -1
0 -1 0 0 0 -1
-1 -1 0 -1 -1 0
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
-t^-2+2t^-1-3+2t-t^2
43
First homology
of the double branched cover of 11n_129
Z/43
2 2
11n_130
1

detected by
an unknotting move
-1+5t-12t^2+17t^3-12t^4+5t^5-t^6
Seifert matrix of 11n_130
0 -1 0 -1 -1 -1
-1 0 0 0 -1 0
-1 -1 -1 -1 -1 -1
0 0 0 -1 0 0
-2 -1 -1 -1 -1 -1
-1 -1 0 -1 -1 0
1
Generator of the Alexander module
(0,-3+2t,0,0,1,0)
the Blanchfield form on it
t^-2-3t^-1+5-3t+t^2
53
First homology
of the double branched cover of 11n_130
Z/53
0 0
11n_131
1

detected by
an unknotting move
1-6t+16t^2-21t^3+16t^4-6t^5+t^6
Seifert matrix of 11n_131
1 0 0 0 0 0
-1 -1 1 0 0 0
1 0 1 0 0 0
0 -1 1 1 -1 1
-1 -1 1 0 -1 0
0 -1 0 0 -1 1
1
Generator of the Alexander module
(0,0,0,-3+3t-t^2,0,-2+2t-t^2)
the Blanchfield form on it
t^-1-2+t
67
First homology
of the double branched cover of 11n_131
Z/67
2 2
11n_132
2

detected by
the Lickorish test
2-6t+9t^2-6t^3+2t^4
Seifert matrix of 11n_132
-1 -1 0 -1
0 0 1 -1
0 0 1 1
0 -1 1 0
1
Generator of the Alexander module
(2-t,0,1,t)
the Blanchfield form on it
2t^-1-3+2t
25
First homology
of the double branched cover of 11n_132
Z/25
0 0
11n_133
3

detected by
the Stoimenow criterion
1-4t+6t^2-2t^3-t^4-2t^5+6t^6-4t^7+t^8
Seifert matrix of 11n_133
-1 0 0 0 0 0 0 0
0 1 0 0 0 0 -1 0
-1 0 -1 0 0 0 0 0
-1 0 -1 -1 0 -1 0 0
0 0 0 -1 -1 -1 0 0
-1 0 -1 0 0 -1 0 0
0 0 0 -1 -1 -1 -1 0
0 1 0 -1 -1 0 -1 1
2
25
First homology
of the double branched cover of 11n_133
Z/5+Z/5
-4 4
11n_134
1

detected by
an unknotting move
-3+12t-17t^2+12t^3-3t^4
Seifert matrix of 11n_134
1 -1 1 -1
0 0 1 -1
0 1 0 1
-1 -1 0 1
1
Generator of the Alexander module
(-1,0,0,1)
the Blanchfield form on it
-1
47
First homology
of the double branched cover of 11n_134
Z/47
2 2
11n_135
2

detected by
the signature
-1+2t-t^3+2t^5-t^6
Seifert matrix of 11n_135
1 0 0 0 0 0
-1 -1 0 -1 1 1
1 1 -2 1 -2 -2
-1 0 0 -1 1 1
1 1 -1 1 -2 -1
1 1 -1 1 -2 -2
1
Generator of the Alexander module
(0,0,0,t,0,1)
the Blanchfield form on it
-t^-2+t^-1+2+t-t^2
5
First homology
of the double branched cover of 11n_135
Z/5
-4 4
11n_136
3

detected by
the signature
3-8t+13t^2-15t^3+13t^4-8t^5+3t^6
Seifert matrix of 11n_136
-1 -1 -1 0 -1 0
0 -2 -1 0 -2 0
0 -1 -2 0 -1 0
0 1 1 -1 1 0
0 -1 -1 0 -2 0
0 1 0 -1 1 -1
1 or 2
63
First homology
of the double branched cover of 11n_136
Z/63
-6 6
11n_137
2

detected by
the signature
-1+7t-13t^2+15t^3-13t^4+7t^5-t^6
Seifert matrix of 11n_137
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 1 1 0
-1 -1 -1 0 -1 -1
0 1 0 0 0 1
1 or 2
57
First homology
of the double branched cover of 11n_137
Z/57
4 4
11n_138
1

detected by
an unknotting move
-2+4t-3t^2+4t^3-2t^4
Seifert matrix of 11n_138
-3 -2 0 -2
0 -1 0 0
-2 -1 -1 -1
-1 -1 0 0
1
Generator of the Alexander module
(2+2t^2,0,0,1)
the Blanchfield form on it
-t^-1+2-t
15
First homology
of the double branched cover of 11n_138
Z/15
-2 2
11n_139
1

detected by
an unknotting move
-2+5t-2t^2
Seifert matrix of 11n_139
2 2
1 0
1
Generator of the Alexander module
(2,1)
the Blanchfield form on it
-2
9
First homology
of the double branched cover of 11n_139
Z/9
0 0
11n_140
2

detected by
the Lickorish test
-2+13t-21t^2+13t^3-2t^4
Seifert matrix of 11n_140
1 0 0 0
1 1 1 0
-1 0 -1 1
0 0 0 2
1
Generator of the Alexander module
(0,1,0,0)
the Blanchfield form on it
-2t^-1+3-2t
51
First homology
of the double branched cover of 11n_140
Z/51
2 2
11n_141
1

detected by
an unknotting move
-5+11t-5t^2
Seifert matrix of 11n_141
-7 -4
-3 -1
1
Generator of the Alexander module
(1,0)
the Blanchfield form on it
-t^-1+2-t
21
First homology
of the double branched cover of 11n_141
Z/21
0 0
11n_142
1

detected by
an unknotting move
1-8t+15t^2-8t^3+t^4
Seifert matrix of 11n_142
0 -1 0 -1
-1 -2 0 -1
-1 0 1 -1
-2 -2 0 -1
1
Generator of the Alexander module
(0,1,-t,0)
the Blanchfield form on it
4t^-1-9+4t
33
First homology
of the double branched cover of 11n_142
Z/33
0 0
11n_143
1

detected by
an unknotting move
-1+2t-t^2+t^3-t^4+2t^5-t^6
Seifert matrix of 11n_143
-1 -1 -1 0 0 -1
0 0 -1 1 0 -1
0 0 0 1 0 -1
0 0 0 1 0 0
0 -1 0 0 -1 -1
0 -1 -1 0 0 -2
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
1
9
First homology
of the double branched cover of 11n_143
Z/9
0 2
11n_144
2

detected by
the signature
-1+7t-15t^2+19t^3-15t^4+7t^5-t^6
Seifert matrix of 11n_144
-1 -1 0 0 -1 -1
0 -2 -1 -1 0 -2
0 0 -1 0 0 0
0 -1 -1 -2 1 -1
0 -1 0 0 0 -1
0 -1 -1 -1 0 -2
1 or 2
65
First homology
of the double branched cover of 11n_144
Z/65
-4 4
11n_145
1

detected by
an unknotting move
1-t-3t^2+7t^3-3t^4-t^5+t^6
Seifert matrix of 11n_145
-1 0 0 0 0 0
0 1 -1 0 0 -1
1 0 0 1 1 1
-1 0 0 -1 0 0
1 0 0 1 0 1
0 0 1 0 1 2
1
Generator of the Alexander module
(0,1,0,0,0,0)
the Blanchfield form on it
-1
9
First homology
of the double branched cover of 11n_145
Z/9
0 0
11n_146
2

detected by
the Lickorish test
1-5t+15t^2-21t^3+15t^4-5t^5+t^6
Seifert matrix of 11n_146
-2 -1 0 0 -1 -2
0 -1 0 0 0 -1
-1 0 1 1 -1 -1
-1 -1 0 0 -1 -2
-2 -1 0 0 -2 -2
0 -1 0 -1 0 -1
1 or 2
63
First homology
of the double branched cover of 11n_146
Z/63
-2 2
11n_147
2

detected by
the signature
1-4t+7t^2-5t^3+3t^4-5t^5+7t^6-4t^7+t^8
Seifert matrix of 11n_147
-1 0 0 0 0 0 0 0
0 1 0 -1 0 0 -1 0
-1 0 -1 0 -1 0 0 0
0 0 -1 -1 0 -1 -1 0
-1 0 0 0 -1 0 0 0
-1 0 -1 0 -1 -1 0 0
0 0 -1 0 0 -1 -1 0
0 1 0 -1 0 -1 -1 1
1
Generator of the Alexander module
(0,0,0,0,0,0,0,1)
the Blanchfield form on it
-t^-2+t^-1-1+t-t^2
37
First homology
of the double branched cover of 11n_147
Z/37
-4 4
11n_148
3

detected by
the new u==2 criterion
-1+5t-10t^2+14t^3-15t^4+14t^5-10t^6+5t^7-t^8
Seifert matrix of 11n_148
-1 0 0 0 0 0 0 0
0 1 0 0 0 0 -1 0
-1 0 -1 -1 0 0 0 0
-1 0 0 -1 0 0 0 0
-1 0 -1 -1 -1 0 0 0
0 1 -1 0 -1 1 -1 1
0 0 -1 0 -1 0 -1 0
0 1 0 0 -1 0 -1 1
2
75
First homology
of the double branched cover of 11n_148
Z/15+Z/5
-2 2
11n_149
2

detected by
the signature
-1+4t-6t^2+4t^3-3t^4+4t^5-6t^6+4t^7-t^8
Seifert matrix of 11n_149
-1 0 -1 -1 0 0 0 0
-1 -1 -1 -1 0 0 0 0
0 0 -1 -1 0 -1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 -1 0 -1 0
0 0 0 1 0 1 0 0
-1 0 -1 0 0 0 -1 0
0 0 0 0 -1 0 -1 -1
1 or 2
33
First homology
of the double branched cover of 11n_149
Z/33
-4 4
11n_150
2

detected by
the Lickorish test
2-9t+17t^2-19t^3+17t^4-9t^5+2t^6
Seifert matrix of 11n_150
-1 0 -1 -1 0 0
-1 -1 -1 -1 0 0
0 0 -1 -1 0 -1
0 0 0 1 0 0
1 0 1 0 -2 0
0 0 0 1 0 1
1
Generator of the Alexander module
(0,0,1,0,-1+2t,0)
the Blanchfield form on it
2t^-2-9t^-1+15-9t+2t^2
75
First homology
of the double branched cover of 11n_150
Z/75
-2 2
11n_151
1

detected by
an unknotting move
-2+6t-7t^2+6t^3-2t^4
Seifert matrix of 11n_151
-2 1 0 0
0 0 -1 0
-2 0 -2 0
-1 1 0 -1
1
Generator of the Alexander module
(0,0,0,1)
the Blanchfield form on it
1
23
First homology
of the double branched cover of 11n_151
Z/23
-2 2
11n_152
1

detected by
an unknotting move
-2+6t-7t^2+6t^3-2t^4
Seifert matrix of 11n_152
-1 -1 -2 -1
0 -2 -2 -1
0 -3 -4 -2
0 -1 -2 0
1
Generator of the Alexander module
(-t,0,1,0)
the Blanchfield form on it
1
23
First homology
of the double branched cover of 11n_152
Z/23
-2 2
11n_153
1

detected by
an unknotting move
-1+4t-7t^2+10t^3-13t^4+10t^5-7t^6+4t^7-t^8
Seifert matrix of 11n_153
-1 0 -1 -1 -1 -1 0 0
-1 -1 -1 -1 -1 -1 0 0
0 0 -1 -1 -1 -1 -1 0
0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 0 1 0 0
0 0 0 1 1 1 1 0
-1 0 -1 0 0 0 0 -1
1
Generator of the Alexander module
(12t-20t^2-2t^3+31t^4-48t^5+55t^6-41t^7+22t^8-9t^9+2t^10,1+5t-20t^2+34t^3-40t^4+37t^5-25t^6+13t^7-5t^8+t^9,10t-20t^2+23t^3-24t^4+17t^5-9t^6+4t^7-t^8,0,20t-40t^2+46t^3-48t^4+34t^5-18t^6+8t^7-2t^8,0,-20t+40t^2-51t^3+58t^4-43t^5+25t^6-12t^7+3t^8,5t-10t^2-11t^3+33t^4-42t^5+47t^6-34t^7+18t^8-8t^9+2t^10)
the Blanchfield form on it
x
57
First homology
of the double branched cover of 11n_153
Z/57
0 0
11n_154
1

detected by
an unknotting move
1-7t+19t^2-25t^3+19t^4-7t^5+t^6
Seifert matrix of 11n_154
3 0 3 3 -1 3
1 -1 1 1 -1 1
2 0 1 2 -1 2
2 0 2 2 -1 2
0 0 0 -1 0 -1
2 0 2 3 -1 2
1
Generator of the Alexander module
(0,-2+t,5-4t+t^2,0,0,0)
the Blanchfield form on it
-t^-2+4t^-1-5+4t-t^2
79
First homology
of the double branched cover of 11n_154
Z/79
-2 2
11n_155
2

detected by
the Lickorish test
2-8t+11t^2-9t^3+11t^4-8t^5+2t^6
Seifert matrix of 11n_155
-1 0 -1 1 0 0
-1 -1 -1 1 0 0
0 0 -1 1 -1 0
0 0 0 2 0 0
0 0 0 -1 1 0
-1 0 -1 0 0 -1
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
2t^-2-10t^-1+17-10t+2t^2
51
First homology
of the double branched cover of 11n_155
Z/51
-2 2
11n_156
1

detected by
an unknotting move
-1+7t-18t^2+25t^3-18t^4+7t^5-t^6
Seifert matrix of 11n_156
1 1 1 1 0 1
0 -1 0 0 0 0
0 1 1 1 1 1
0 -1 0 -2 0 -1
0 -1 0 -1 -1 0
0 -1 0 -1 0 0
1
Generator of the Alexander module
(1,0,0,0,0,0)
the Blanchfield form on it
-1
77
First homology
of the double branched cover of 11n_156
Z/77
0 0
11n_157
2

detected by
the Lickorish test
-1+6t-15t^2+21t^3-15t^4+6t^5-t^6
Seifert matrix of 11n_157
-1 0 0 0 0 0
0 1 0 0 -1 0
0 1 0 -1 -1 -2
1 0 -1 0 0 -1
-1 0 0 0 -1 0
1 1 -1 -1 -1 -2
2
65
First homology
of the double branched cover of 11n_157
Z/65
0 0
11n_158
2

detected by
the signature
-1+4t-7t^2+7t^3-7t^4+7t^5-7t^6+4t^7-t^8
Seifert matrix of 11n_158
-1 0 -1 -1 -1 0 -1 0
-1 -1 -1 -1 -1 0 -1 0
0 0 -1 -1 -1 -1 -1 0
0 0 0 -1 -1 -1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 -1 -1 -1 -1 0
-1 0 -1 -1 0 0 -1 -1
1 or 2
45
First homology
of the double branched cover of 11n_158
Z/45
-4 4
11n_159
1

detected by
an unknotting move
1-6t+17t^2-23t^3+17t^4-6t^5+t^6
Seifert matrix of 11n_159
1 0 -1 0 1 -1
0 -1 -1 -1 1 -1
0 0 0 -1 1 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 -1 -1 1 0
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
-1
71
First homology
of the double branched cover of 11n_159
Z/71
2 2
11n_160
1

detected by
an unknotting move
1-6t+16t^2-21t^3+16t^4-6t^5+t^6
Seifert matrix of 11n_160
1 1 0 1 1 1
0 -1 0 0 0 0
0 -1 -1 -1 -1 0
0 -1 0 -2 0 -1
0 -1 0 -1 -1 0
0 -1 0 -1 0 0
1
Generator of the Alexander module
(-t,0,0,0,1,0)
the Blanchfield form on it
-t^-1+2-t
67
First homology
of the double branched cover of 11n_160
Z/67
-2 2
11n_161
1

detected by
an unknotting move
2-8t+14t^2-15t^3+14t^4-8t^5+2t^6
Seifert matrix of 11n_161
-1 0 -1 0 1 0
-1 -1 -1 0 1 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 1 1 -2 0
-1 0 0 0 1 -1
1
Generator of the Alexander module
(0,4-104t+182t^2-286t^3+471t^4-357t^5+293t^6-139t^7-4t^8+20t^9,-3+69t-108t^2+258t^3-408t^4+366t^5-444t^6+231t^7+6t^8-30t^9,-2+46t-60t^2+166t^3-244t^4+229t^5-302t^6+159t^7+4t^8-20t^9,1-23t+40t^2-34t^3+61t^4-36t^5-t^6+5t^7,1-29t+46t^2-51t^3+77t^4-41t^5-t^6+5t^7)
the Blanchfield form on it
x
63
First homology
of the double branched cover of 11n_161
Z/63
-2 2
11n_162
2

detected by
the Lickorish test
-3+14t-21t^2+14t^3-3t^4
Seifert matrix of 11n_162
-2 -1 1 0
0 0 -1 0
0 -1 0 -1
1 1 -1 -1
2
55
First homology
of the double branched cover of 11n_162
Z/55
-2 2
11n_163
2

detected by
the Lickorish test
1-8t+22t^2-29t^3+22t^4-8t^5+t^6
Seifert matrix of 11n_163
-1 0 -1 0 0 0
1 1 1 0 1 0
0 0 -1 0 0 0
1 1 1 -1 1 -1
1 0 0 0 1 0
1 0 1 -1 0 -2
1
Generator of the Alexander module
(0,0,0,0,0,1)
the Blanchfield form on it
-t^-2+3t^-1-3+3t-t^2
91
First homology
of the double branched cover of 11n_163
Z/91
-2 2
11n_164
2

detected by
the Nakanishi index
-1+5t-10t^2+13t^3-10t^4+5t^5-t^6
Seifert matrix of 11n_164
1 0 -1 0 0 -1
-1 -1 1 0 -1 1
0 0 -1 0 0 0
0 0 -1 -1 0 -1
-1 0 0 0 -1 1
0 0 0 0 0 -1
2
45
First homology
of the double branched cover of 11n_164
Z/15+Z/3
-4 4
11n_165
2

detected by
the Lickorish test
-1+7t-20t^2+29t^3-20t^4+7t^5-t^6
Seifert matrix of 11n_165
1 0 -1 0 0 -1
-1 -1 1 0 -1 1
0 0 1 0 0 0
0 0 -1 -1 0 -1
-1 0 0 0 -1 1
0 0 0 0 0 1
2
85
First homology
of the double branched cover of 11n_165
Z/85
0 0
11n_166
1

detected by
an unknotting move
1-4t+8t^2-11t^3+11t^4-11t^5+8t^6-4t^7+t^8
Seifert matrix of 11n_166
-1 0 0 -1 0 0 0 -1
-1 -1 0 -1 0 0 0 -1
-1 -1 1 0 0 0 1 0
0 0 0 -1 -1 0 0 0
0 0 0 0 -1 0 0 0
-1 -1 1 0 0 1 1 -1
0 0 0 0 0 0 1 0
0 0 0 -1 -1 0 0 -1
1
Generator of the Alexander module
(0,0,0,0,0,1,0,0)
the Blanchfield form on it
t^-1-1+t
59
First homology
of the double branched cover of 11n_166
Z/59
-2 2
11n_167
2

detected by
the Nakanishi index
1-5t+15t^2-21t^3+15t^4-5t^5+t^6
Seifert matrix of 11n_167
-1 0 -1 0 0 -1
0 -1 0 0 0 0
0 1 0 1 0 -1
0 -1 0 -1 0 0
0 -1 1 -1 1 0
0 1 -1 1 0 -2
2
63
First homology
of the double branched cover of 11n_167
Z/21+Z/3
-2 2
11n_168
2

detected by
the Lickorish test
1-6t+18t^2-25t^3+18t^4-6t^5+t^6
Seifert matrix of 11n_168
-2 1 -1 0 0 -1
0 -1 0 0 0 0
-1 1 -1 0 0 -2
1 -1 0 1 -1 0
0 0 -1 0 -1 -1
-1 1 -1 0 0 -1
1 or 2
75
First homology
of the double branched cover of 11n_168
Z/75
-2 2
11n_169
3

detected by
the signature
3-6t+6t^2-5t^3+6t^4-6t^5+3t^6
Seifert matrix of 11n_169
-1 1 -1 -1 1 -1
0 -2 0 0 -1 0
0 0 -1 -1 1 -1
0 0 0 -1 1 0
0 -1 0 0 -2 0
0 0 0 -1 1 -1
1 or 2
35
First homology
of the double branched cover of 11n_169
Z/35
-6 6
11n_170
2

detected by
the Lickorish test
-3+16t-25t^2+16t^3-3t^4
Seifert matrix of 11n_170
-1 1 1 1
0 2 1 0
0 1 2 0
0 0 -1 1
1
Generator of the Alexander module
(-1,0,0,1)
the Blanchfield form on it
6t^-1-11+6t
63
First homology
of the double branched cover of 11n_170
Z/63
2 2
11n_171
2

detected by
the signature
6-16t+21t^2-16t^3+6t^4
Seifert matrix of 11n_171
-1 1 1 1
0 -2 -1 0
0 -1 -2 0
0 0 -1 -2
1
Generator of the Alexander module
(2t+4t^2-9t^3+11t^4-8t^5+2t^6,0,3t+t^2-9t^3+8t^4-2t^5,1+2t-9t^2+8t^3-2t^4)
the Blanchfield form on it
2553t^-3-10225t^-2+20602t^-1-25578+20602t-10225t^2+2553t^3
65
First homology
of the double branched cover of 11n_171
Z/65
-4 4
11n_172
1

detected by
an unknotting move
-1+5t-11t^2+15t^3-11t^4+5t^5-t^6
Seifert matrix of 11n_172
0 0 0 -1 -1 -1
1 0 1 -1 0 -1
1 0 0 -1 0 -1
-1 -1 -1 2 1 2
0 0 0 1 2 1
-1 0 -1 1 1 2
1
Generator of the Alexander module
(0,t,0,0,0,1-2t)
the Blanchfield form on it
t^-1-2+t
49
First homology
of the double branched cover of 11n_172
Z/49
0 0
11n_173
2

detected by
the signature
-1+4t-8t^2+7t^3-5t^4+7t^5-8t^6+4t^7-t^8
Seifert matrix of 11n_173
-1 0 -1 -1 0 0 -1 0
-1 -1 -1 -1 0 0 -1 0
0 0 -1 -1 -1 0 -1 0
0 0 0 -1 -1 0 0 0
0 0 0 0 -1 0 0 0
-1 0 -1 0 0 1 0 0
0 0 0 -1 -1 0 -1 0
-1 0 -1 -1 0 1 -1 1
1 or 2
45
First homology
of the double branched cover of 11n_173
Z/45
-4 4
11n_174
2

detected by
the signature
-2+11t-22t^2+27t^3-22t^4+11t^5-2t^6
Seifert matrix of 11n_174
2 0 1 -1 0 2
2 -1 1 -1 0 1
2 0 0 -1 -1 1
-1 0 0 0 0 -1
2 1 1 -1 -1 0
0 1 0 0 0 -1
1
Generator of the Alexander module
(0,0,0,0,1,0)
the Blanchfield form on it
4t^-1-7+4t
97
First homology
of the double branched cover of 11n_174
Z/97
-4 4
11n_175
2

detected by
the signature
-2+9t-14t^2+15t^3-14t^4+9t^5-2t^6
Seifert matrix of 11n_175
-1 0 0 0 -1 0
-1 -1 1 -1 0 0
1 0 -2 0 0 0
-1 0 0 -1 0 0
0 0 0 0 1 0
0 0 -1 0 -1 -1
2
65
First homology
of the double branched cover of 11n_175
Z/65
-4 4
11n_176
1

detected by
an unknotting move
1-6t+15t^2-19t^3+15t^4-6t^5+t^6
Seifert matrix of 11n_176
0 0 -1 -1 -1 -1
1 0 -1 -1 0 -1
-1 0 2 1 1 1
-1 -1 2 2 1 2
0 0 1 1 2 1
-1 -1 2 1 1 2
1
Generator of the Alexander module
(0,1,0,0,1,1)
the Blanchfield form on it
-t^-2+4t^-1-6+4t-t^2
63
First homology
of the double branched cover of 11n_176
Z/63
2 2
11n_177
1

detected by
an unknotting move
1-5t+11t^2-16t^3+17t^4-16t^5+11t^6-5t^7+t^8
Seifert matrix of 11n_177
-1 0 0 -1 0 0 -1 0
-1 -1 0 -1 0 0 -1 0
-1 0 1 0 0 0 0 0
0 0 0 -1 -1 0 0 0
0 0 0 0 -1 0 0 0
-1 0 1 0 0 1 -1 0
0 0 0 -1 -1 0 -1 0
-1 0 1 -1 0 1 -1 1
1
Generator of the Alexander module
(-2-2t,-t^2-t^3,-3-3t,t+t^2+t^3+2t^4,1+t,-t^2,1+t,-t-t^2)
the Blanchfield form on it
395t^-3-989t^-2+1732t^-1-1761+1732t-989t^2+395t^3
83
First homology
of the double branched cover of 11n_177
Z/83
-2 2
11n_178
2

detected by
the Lickorish test
2-9t+22t^2-29t^3+22t^4-9t^5+2t^6
Seifert matrix of 11n_178
1 0 0 0 0 0
1 -1 0 0 -1 0
0 0 -1 0 -1 0
1 1 1 0 -1 1
0 1 0 0 -1 0
2 2 1 1 -2 2
1
Generator of the Alexander module
(0,0,0,1,0,0)
the Blanchfield form on it
2t^-2-5t^-1+8-5t+2t^2
95
First homology
of the double branched cover of 11n_178
Z/95
-2 2
11n_179
1

detected by
an unknotting move
-1+7t-18t^2+25t^3-18t^4+7t^5-t^6
Seifert matrix of 11n_179
1 0 0 0 0 0
1 1 0 0 1 0
1 1 -1 0 1 0
0 -1 0 -1 -1 -1
1 0 0 0 1 0
1 1 0 0 1 -1
1
Generator of the Alexander module
(0,0,1,0,0,0)
the Blanchfield form on it
t^-2-3t^-1+5-3t+t^2
77
First homology
of the double branched cover of 11n_179
Z/77
0 0
11n_180
3

detected by
the signature
3-7t+11t^2-13t^3+11t^4-7t^5+3t^6
Seifert matrix of 11n_180
-1 1 1 -1 1 1
0 -2 -2 0 -1 -2
0 -1 -2 0 -1 -1
0 0 0 -1 1 0
0 -1 -1 0 -2 -1
0 -1 -2 0 -1 -2
1 or 2
55
First homology
of the double branched cover of 11n_180
Z/55
-6 6
11n_181
2

detected by
the signature
5-11t+13t^2-11t^3+5t^4
Seifert matrix of 11n_181
-1 -1 1 -1
0 -1 1 0
0 0 -2 1
0 0 1 -3
1 or 2
45
First homology
of the double branched cover of 11n_181
Z/45
-4 4
11n_182
1

detected by
an unknotting move
-1+5t-11t^2+18t^3-23t^4+18t^5-11t^6+5t^7-t^8
Seifert matrix of 11n_182
1 0 0 0 1 0 0 1
-1 -1 -1 0 -1 -1 -1 -1
-1 0 -1 0 0 -1 0 -1
0 0 0 1 0 0 0 0
0 0 0 -1 1 0 0 0
-1 0 0 0 0 -1 0 0
-1 0 -1 0 -1 -1 -1 -1
0 0 0 -1 1 0 0 1
1
Generator of the Alexander module
(0,0,1,0,0,0,0,0)
the Blanchfield form on it
t^-2-3t^-1+3-3t+t^2
93
First homology
of the double branched cover of 11n_182
Z/93
0 0
11n_183
2

detected by
the signature
1+t-6t^2+9t^3-6t^4+t^5+t^6
Seifert matrix of 11n_183
-1 -1 0 -2 -1 -1
0 -2 -1 -2 -1 -1
0 1 -1 0 0 0
0 0 -2 -2 -1 -1
0 0 -1 -1 -1 0
0 0 -1 0 0 -1
2
21
First homology
of the double branched cover of 11n_183
Z/21
-4 4
11n_184
1

detected by
an unknotting move
2-9t+20t^2-25t^3+20t^4-9t^5+2t^6
Seifert matrix of 11n_184
1 0 0 0 0 0
1 -1 -1 0 0 0
0 1 -1 0 0 0
2 2 -2 2 1 1
1 1 -1 1 0 1
1 1 -1 2 1 0
1
Generator of the Alexander module
(0,1,0,0,0,0)
the Blanchfield form on it
-t^-3+6t^-2-15t^-1+20-15t+6t^2-t^3
87
First homology
of the double branched cover of 11n_184
Z/87
-2 2
11n_185
2

detected by
the signature
-2+11t-24t^2+31t^3-24t^4+11t^5-2t^6
Seifert matrix of 11n_185
2 1 0 0 0 2
2 0 0 0 -1 1
-1 -1 -1 -1 0 0
0 0 0 -2 0 2
1 0 0 0 -1 0
0 0 0 0 0 -1
2
105
First homology
of the double branched cover of 11n_185
Z/105
-4 4