| |
L. Arlotti, N. Bellomo, M. Lachowicz, Kinetic equations modelling population dynamics, Transport Theory Statist. Physics, 29, (1-2), 2000, 125-139. |
L. Arlotti, N. Bellomo, E. De Angelis, M. Lachowicz, Generalized Kinetic Models in Applied Sciences. Lecture Notes on Mathematical Problems, World Sci., New Jersey 2003. |
L. Arlotti, A. Gamba, M. Lachowicz, A kinetic model of tumor - immune system cellular interactions, J. Theoret. Medicine, 4 (1), 2002, 39-50. |
L. Arlotti, M. Lachowicz, Qualitative analysis of an equation modelling tumor - host dynamics, Math. Comput. Model., 23, (6), 1996, 11-29. |
N. Bellomo, M. Lachowicz, J. Polewczak, On a mathematical model in theoretical immunology, Appl. Math. Lett., 10, (4), 1997, 53-58. |
J. Banasiak, M. Lachowicz, Chaotic linear dynamical systems with applications, The Proceedings of the 2nd International Conference on Semigroups of Operators:
Theory and Applications SOTA 2, Rio de Janeiro, 10-14 September 2001, Eds. C. Kubrusly, N. Levan, and M. da Silveira, Optimization Software, Los Angeles, 2002, 32-44. |
J. Banasiak, M. Lachowicz, Topological chaos for birth - and - death - type models with proliferation, Math. Models Methods Appl. Sci., 12, 6, 2002, 755-775. |
J. Banasiak, M. Lachowicz, M. Moszyński, Topological chaos: When topology meets medicine, Appl. Math. Lett., 16, 2003, 303-308. |
M. Bodnar, M. Bodnar, On the differences and similarities of the first order delay and ordinary differential equations, J. Math. Anal. Appl., 300, 1, 2004, 172–188. |
M. Bodnar, Norm conservation for generalized kinetic population models with delay, Math. Comput. Modelling, 35, 7-8, 2002, 765-778. |
M. Bodnar, On some integro-differential models with delay in population dynamics, Proceedings of the VII National Conference Application of Mathematics in Biology and Medicine, Zawoja, 25-28 September 2001, 21-26. |
M. Bodnar, On the blow-up of solutions of delay differential equations. preprint RW 00-16 (83), November 2000, Institute of Applied Mathematics and Mechanics, Warsaw University |
M. Bodnar, On the nonnegativity of solutions of delay differential equations, Appl. Math. Lett., 13,6 (2000), 91-95. |
M. Bodnar, U. Foryś, A model of the immune system with stimulation depending on time, Proceedings of the IV National Conference Application of Mathematics in Biology and Medicine, Zwierzyniec, 15-18 September 1998, 12-17 |
M. Bodnar, U. Foryś, A model of immune system with time-depended immune reactivity, Non. Anal. Th. Meth. Appl., 70, 2, 2009, 1049–1058 |
M. Bodnar, U. Foryś, Behaviour of Marchuk's model depending on time delay, Intern. J. Appl. Math. Comput. Sci. 10(1) , 2000, 97-112 |
M. Bodnar, U. Foryś, Forest-pest interaction dynamics, Proceedings of the V National Conference Application of Mathematics in Biology and Medicine, Ustrzyki Górne, 14-17 września 1999, 15-20 |
M. Bodnar, U. Foryś, Periodic dynamics of the model of immune system, Appl. Math. (Warsaw), 27(1), 2000, 113-126 |
U. Foryś, Analysis of the model of coral reefs colony, proceeding of the IX National Conference on Mathematics Applied to Biology and Medicine, Piwniczna, 2003. |
U. Foryś, Biological delay systems and the Mikhailov criterion of stability (accepted to J. Biol. Sys., preprint On the Mikhailov criterion and stability of delay differential equations, RW 01-14 (97) November 2001, Institute of Applied Mathematics and Mechanics, Warsaw University). |
U. Foryś, Discrete mathematical model of an immune system, in Mathematical Population Dynamics, 2, Wuerz Publishing, 1995, 167 - 182. |
U. Foryś, Global analysis of Marchuk's model in a case of strong immune system, J. Biol. Sys., 8 (4) (2000), 331 - 346. |
U. Foryś, Global analysis of Marchuk's model in a case of weak immune system, Math. Comp. Modelling, 25 (6) (1997), 97 - 106. |
U. Foryś, Global analysis of Marchuk's model of an immune system in some special cases, in proceedings of the I National Conference on Mathematics Applied to Biology and Medicine, Zakopane, 1995. |
U. Foryś, Global analysis of the initial value problem for a system of ODE modeling the immune system after vaccinations, Math. Comp. Modelling, 29 (1999), 79 - 85. |
U. Foryś, Global stability for some type of delay equations (accepted to Appl. Math. Letters, preprint RW 03-02 (123) January 2003, Institute of Applied Mathematics and Mechanics, Warsaw University). |
U. Foryś, Hopf bifurcation in Marchuk's model of immune reactions, Math. Comp. Modelling, 34 (2001), 725-735. |
U. Foryś, Interleukin mathematical model of an immune system, J. Biol. Sys., 3 (1995), 889 - 902. |
U. Foryś, Marchuk's model of immune system dynamics with application to tumour growth, J. Theor. Medicine, 4 (1) (2002), 85-93. |
U. Foryś, Mathematical model of an immune system in a case of vaccination, in proceedings of the II National Conference on Mathematics Applied to Biology and Medicine, Zakopane, 1996. |
U. Foryś, Mathematical model of an immune system with random time of reaction, Appl. Math. (Warsaw) 21 (4) (1993), 521 - 536. |
U. Foryś, Modele matematyczne w epidemiologii i immunologii, Matematyka Stosowana. Matematyka dla spoeczenstwa, 1 (2000). |
U. Foryś, Professor Wiesaw Szlenk (1935 - 1995), Appl. Math. (Warsaw), 27 (1) (2000), 1 - 20. |
U. Foryś, Professor Wiesaw Szlenk - life and activity, in proceedings of the IV National Conference on Mathematics Applied to Biology and Medicine, Zwierzyniec, 1998. |
U. Foryś, Some remarks on the stability of chronic state in Marchuk's model depending on time delay, in proceedings of the VI National Conference on Mathematics Applied to Biology and Medicine, Zawoja, 2000. |
U. Foryś, Time delays in avascular tumour growth, proceeding of the VII National Conference on Mathematics Applied to Biology and Medicine, Zawoja, 2001. |
U. Foryś, The mathematical model of immune system with random time of reaction, in Lecture notes of the ICB seminars. Biosystems, ICB Warsaw 1992, 162 - 186. |
U. Foryś, M. Bodnar, Time delays in in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003) |
U. Foryś, M. Bodnar, Time delays in regulatory apoptosis for solid avascular tumour, Math. Comput. Modelling, 37 (2003) |
U. Foryś, M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour (accepted to Banach Center Publications, preprint RW 02-10 (110), August 2002, Institute of Applied Mathematics and Mechanics, Warsaw University). |
U. Foryś, R. Kowalczyk, Qualitative analysis on the initial value problem to the logistic equation with delay, Math. Comp. Modelling, 35 (2002), 1-13. |
U. Foryś, A. Marciniak-Czochra, Delay logistic equation with diffusion, proceedings of the VIII National Conference on Mathematics Applied to Biology and Medicine, Łajs, 2002. |
U. Foryś, A. Marciniak-Czochra, Logistic equations in tumour growth modelling, Int. J. Appl. Math. Comp. Sci, 13 (3) (2003), 317-326. |
U. Foryś, A. Mokwa-Borkowska, Solid tumour growth. Analysis of necrotic core formation (preprint RW 03-01 (122), January, 2003, Institute of Applied Mathematics and Mechanics, Warsaw University). |
U. Foryś, J. Nowak, A. Mokwa-Borkowska, Some remarks on coral reefs, mathematical modelling and organic architecture of the future, proceedings of the VIII National Conference on Mathematics Applied to Biology and Medicine, Łajs, 2002. |
U. Foryś, N. Żołek, A model of immune system after vaccinations, ARI, 50 (1998), 180 - 184. |
U. Foryś, N. Żołek, Complementary analysis of the initial value problem for system of ODE modelling immune system after vaccinations, Appl. Math. (Warsaw), 27 (1) (2000), 103 - 111. |
M. Lachowicz, Competition tumor - immune system, Proceedings of the Sixth National Conference on Application of Mathematics in Biology and Medicine, Zawoja, September 12-15, 2000, 89-93. |
M. Lachowicz, Describing competitive systems at the level of interacting individuals, Proceedings of the Eighth National Conference on Application of Mathematics in Biology and Medicine, Łajs, September 24-27, 2002, 95-100. |
M. Lachowicz, From microscopic to macroscopic description for generalized kinetic models, Math. Models Methods Appl. Sci., 12, 7, 2002, 985-1005. |
M. Lachowicz, From microscopic to macroscopic descriptions of complex systems, Compt. Rend. Acad. Sci. Paris, Serie IIb, 2003, to appear. |
M. Lachowicz, Nonlocal coagulation and fragmentation, Proceedings of the Fifth National Conference on Application of Mathematics in Biology and Medicine, Ustrzyki Górne, September 14-17, 1999, 93-98. |
M. Lachowicz, Modele matematyczne w biologii, Matematyka Stosowana - Matematyka dla społeczeństwa, 1, 42, 2000, 3-34. |
M. Lachowicz, On bilinear kinetic equations. Between micro and macro description of biological populations, Mathematical Modelling of Population Dynamics, Banach Center Publ., 217-230, 2004. |
M. Lachowicz, Ph. Laurencot, D. Wrzosek, On the Oort-Hulst-Safranov coagulation equation and its relation to the Smoluchowski equation, SIAM J. Math. Anal., 34, 6, 2003-1421. |
M. Lachowicz, D. Wrzosek, A nonlocal coagulation-fragmentation model, Appl. Math. (Warsaw), 27, (1), 2000, 45-66. |
M. Lachowicz, D. Wrzosek, Nonlocal bilinear equations. Equilibrium solutions and diffusive limit, Math. Models Methods Appl. Sci., 11, no. 8, 2001, 1393-1409. |
M. Lachowicz, D. Wrzosek, Matematyczne modele zjawisk przyrodniczych, Matematyka, Społeczeństwo, Nauczanie, OKM, 15, 1995, 4 - 15. |