String Powers in Trees

Abstract

In this paper we consider substrings of an unrooted edge-labeled tree, which are defined as the composite labels of simple paths. We study how the number of distinct repetitive substrings depends on their exponent α. An α-power is defined as a string U with an (integral, not necessarily shortest) period |U|/α. For example, squares are 2-powers and cubes are 3-powers. We investigate the asymptotic growth of the maximal number $\mbox{powers}\alpha(n)ofdistinct\alphapowersoccurringassubstringsofatreewithnnodes.Themaximumnumberofsuchpowersbehavesmuchunlikeinstrings.Inapreviouswork(CPM2012.LNCS,vol7354.Springer,Berlin,pp2740,2012.Itwasprovedthatthenumberofdifferentsquaresinatreeis\mbox{powers}2(n)=\Theta(n^{4/3}).Weextendthisresultandanalyzepowersofarbitraryrationalexponent\alpha\ge 1.Weidentifytwophasetransitionthresholds:1.\mbox{powers}\alpha(n)=\Theta(n^2)for\alpha<2;2.\mbox{powers}\alpha(n)=\Theta(n^{4/3})for2\le \alpha<3;3.\mbox{powers}_\alpha(n)=O(n\log n)for\alpha>3;ThisisafullversionofapaperpresentedatCPM2015.LNCS,vol9133.Springer,Berlin,pp284294,2015.Comparedtotheearlierversion,weimproveourmaintechnicalcontribution,i.e.,theupperboundonthenumberofcubesinatree,fromO(n\log n)toO(n).Thisletsusobtainatightasymptoticcharacterizationofthe\mbox{powers}$ function.

Publication
Algorithmica 79(3):814-834
Date