String Powers in Trees
T. Kociumaka,
J. Radoszewski,
W. Rytter,
T. Waleń
June, 2015
Abstract
We investigate the asymptotic growth of the maximal number $\mbox{powers}\alpha(n)\alphaw|w|/\alpha|w|n\mbox{powers}2(n)=\Theta(n^{4/3})\mbox{powers}\alpha(n)=\Theta(n^2)\alpha<2\mbox{powers}\alpha(n)=\Theta(n^{4/3})2\le \alpha<3\mbox{powers}\alpha(n)=O(n\log n)3\le\alpha<4\mbox{powers}\alpha(n)=\Theta(n)4\le\alpha$. The difficult case is the third point, which follows from the fact that the number of different cubes in a rooted tree is linear (in this case, only cubes passing through the root are counted).
Publication
CPM pp:284-294