String Powers in Trees

Abstract

We investigate the asymptotic growth of the maximal number $\mbox{powers}\alpha(n)ofdifferent\alphapowers(stringswwithaperiod|w|/\alpha|w|)inanedgelabeledunrootedtreeofsizen.Thenumberofdifferentpowersintreesbehavesmuchunlikeinstrings.Inapreviouswork(CPM,2012)itwasprovedthatthenumberofdifferentsquaresinatreeis\mbox{powers}2(n)=\Theta(n^{4/3}).Weextendthisresultandanalyzeotherpowers.Weshowthattherearephasetransitionthresholds:1.\mbox{powers}\alpha(n)=\Theta(n^2)for\alpha<2;2.\mbox{powers}\alpha(n)=\Theta(n^{4/3})for2\le \alpha<3;3.\mbox{powers}\alpha(n)=O(n\log n)for3\le\alpha<4;4.\mbox{powers}\alpha(n)=\Theta(n)for4\le\alpha$. The difficult case is the third point, which follows from the fact that the number of different cubes in a rooted tree is linear (in this case, only cubes passing through the root are counted).

Publication
CPM pp:284-294
Date