Noworoczny mecz matematyczny |
|
|
|
Zadania II
|
Wpisany przez Joachim Jelisiejew
|
wtorek, 04 stycznia 2011 21:45 |
Zadania PDF.
Źródło zadań w texu.
% File: mecz_mat.tex
% Created: Fri Dec 17 01:00 PM 2010 C
% Last Change: Fri Dec 17 01:00 PM 2010 C
\documentclass[10pt]{article}
\usepackage{amssymb}
\usepackage{amsmath}
\textwidth 16cm
\textheight 24cm
\oddsidemargin 0cm
\topmargin 0pt
\headheight 0pt
\headsep 0pt
\usepackage[polish]{babel}
\usepackage[koi8-r,utf8]{inputenc}
\usepackage[T2A]{fontenc}
\usepackage{polski}
\usepackage{import}
\usepackage{graphicx}
\usepackage{CJKutf8}
\usepackage{pinyin}
\usepackage[labelsep=none,figurename=]{caption}
%\usepackage{MnSymbol}
% ----------------------------------------------------------------
\vfuzz4pt % Don't report over-full v-boxes if over-edge is small
\hfuzz4pt % Don't report over-full h-boxes if over-edge is small
% THEOREMS -------------------------------------------------------
\newtheorem{thm}{Twierdzenie}[section]
\newtheorem{cor}[thm]{Wniosek}
\newtheorem{lem}[thm]{Lemat}
\newtheorem{defn}[thm]{Definicja}
\newtheorem{tozs}[thm]{Tożsamość}
\newtheorem{hyp}[thm]{Hipoteza}
\newtheorem{useless}[thm]{}
\newenvironment{proof}[1][Dowód. ]{\noindent\textsc{#1}}
{\nolinebreak[4]\hfill$\blacksquare$\\\par}
\newenvironment{sol}[1][Rozwiązanie. ]{
\noindent\textsc{#1}}
{\hfill\par}
\newenvironment{problem}{\noindent\textsc{Zadanie}\\}
{\hfill\par}
\def\deg{^{\circ}}
\def\source#1{\\Źródło: #1}
\subimport{../}{style}
%\include{style}
\begin{document}
\large
\renewcommand{\thefigure}{}
\begin{figure}
\section{Powodzenia!}
\end{figure}
%\subsection{międzynarodowe}
\begin{enumerate}
\item Найти наибольшее количество разных перестановок из $\{\sigma,
\sigma^2, \sigma^3, \dots\}$, если $\sigma$~--- перестановка
12-элементного множества ($\sigma^k$ это $k$--кратная композиция
$\sigma$).
\item
\begin{CJK}{UTF8}{gbsn}
计算
\end{CJK}
$\frac{2}{1\cdot 2\cdot 3}
+
\frac{2}{2\cdot 3\cdot 4}
+\dots+
\frac{2}{2009\cdot 2010\cdot 2011}$.
\item Bestem alle positive heltal $n$, således at $5^{(n-1)!} - 1$ er delelig med
$n$.
\item
Prove that in any triangle the following inequality holds: $pR \geq
2S$, where $p, R, S$ are respectively the half of circumference of the
triangle (the semiperimeter), the radius of the circumcircle and the
area of the triangle.
\item
Es wurde solches konvexe Sechseck $ABCDEF$ gegeben, dass für allen
Vierecken $ABCD$, $CDEF$, $EFAB$ ein Umkreis existiert. Zeigen, dass für das
Sechseck $ABCDEF$ auch ein Umkreis existiert.
\item Sia $f(x)$ un polinomio a~coefficienti interi tale che $f(3) = 5$. Se un
intero $n$ ha
la propriet\`a che $f(n^3) = 15$, quali sono i~possibili valori di $n$?
\end{enumerate}
\end{document}
|