dr Bartosz Bieganowski

 Faculty of Mathematics, Informatics and Mechanics
 University of Warsaw
 ul. Banacha 2, 02-097 Warsaw, Poland
 bartoszb [AT] mimuw edu pl


 Faculty of Mathematics and Computer Science
 Chair of Nonlinear Mathematical Analysis
 Nicolaus Copernicus University
 ul. Chopina 12/18, 87-100 Toruń, Poland
 bartoszb [AT] mat umk pl
 ORCID: 0000-0003-2037-1573
[Home] [Scientific interests] [Education and employment] [Publications] [Achievements] [Conferences] [Certifications] [Teaching (in polish)]

Scientific interests: Seminar Variational methods and PDEs

Education and employment:

  1. B. Bieganowski, J. Mederski, J. Schino: Normalized solutions to at least mass critical problems: singular polyharmonic equations and related curl-curl problems,
    submitted, arXiv:2212.12361
  2. B. Bieganowski, A. Konysz: Elliptic problems with mixed nonlinearities and potentials singular at the origin and at the boundary of the domain,
    submitted, arXiv:2212.07825
  3. M. Bieganowska, B. Bieganowski: [in polish] Bezpieczeństwo kont w Internecie,
    w: A.B. Kwiatkowska, M.M. Sysło [red.]: Informatyka w edukacji. Uczniowie i nauczyciele w szkole przyszłości, Toruń 2022, ISBN: 978-83-8180-645-9, p. 347-354
  4. B. Bieganowski, T. Cieślak, J. Siemianowski: Magnetostatic levitation and two related linear PDEs in unbounded domains,
    submitted, arXiv:2202.01570
  5. F. Bernini, B. Bieganowski: Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities,
    Calc. Var. Partial Differential Equations, Vol. 61, Article number: 182 (2022), DOI 10.1007/s00526-022-02297-2
  6. B. Bieganowski: On-line interval graphs coloring - modification of the First-Fit algorithm and its performance ratio,
    Discrete Mathematics, Algorithms and Applications, Vol. 14, No. 08, 2250042 (2022), DOI 10.1142/S1793830922500422
  7. F. Bernini, B. Bieganowski, S. Secchi: Semirelativistic Choquard equations with singular potentials and general nonlinearities arising from Hartree-Fock theory,
    Nonlinear Analysis, Vol. 217 (2022), 112738 DOI 10.1016/
  8. B. Bieganowski: Solutions to a nonlinear Maxwell equation with two competing nonlinearities in ℝ3,
    Bulletin Polish Acad. Sci. Math. 69 (2021), p. 37-60, DOI 10.4064/ba210731-19-8
  9. B. Bieganowski, J. Mederski: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth,
    J. Funct. Anal., Vol. 280, Issue 11 (2021), 108989 DOI 10.1016/j.jfa.2021.108989
  10. B. Bieganowski, A. Dymek, D. Strzelecki: [in polish] Średnie w zawodach studenckich,
    Delta 12 (547), 2019, p. 18-19, link
  11. B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional Schrödinger equations on ℝN,
    J. Fixed Point Theory Appl. 22, 76 (2020), DOI 10.1007/s11784-020-00812-6
  12. B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains,
    Topol. Methods Nonlinear Anal., Vol. 57, No, 2 (2021), p. 413-425, DOI 10.12775/TMNA.2020.038
  13. B. Bieganowski, J. Mederski: Bound states for the Schrödinger equation with mixed-type nonlinearites,
    Indiana Univ. Math. J. 71 No. 1 (2022), p. 65–92, DOI 10.1512/iumj.2022.71.8662
  14. B. Bieganowski: Schrödinger-type equations with sign-changing nonlinearities: a survey,
    survey, arXiv:1810.01754
  15. B. Bieganowski, J. Mederski: Note on semiclassical states for the Schrödinger equation with nonautonomous nonlinearities,
    Appl. Math. Lett., Vol. 88 (2019), p. 149-155, DOI 10.1016/j.aml.2018.08.021
  16. B. Bieganowski: [in polish] Narzędzia informatyczne w nauczaniu przedmiotów przyrodniczych,
    w: A.B. Kwiatkowska, M.M. Sysło [red.]: Informatyka w edukacji. Myśl komputacyjnie!, Toruń 2018, ISBN: 978-83-231-4049-8, p. 102-108
  17. B. Bieganowski, S. Secchi: The semirelativistic Choquard equation with a local nonlinear term,
    Discrete & Continuous Dynamical Systems - A, Vol. 37, no 7 (2019), p. 4279-4302 DOI 10.3934/dcds.2019173
  18. B. Bieganowski: Systems of coupled Schrödinger equations with sign-changing nonlinearities via classical Nehari manifold approach,
    Complex Var. Elliptic Equ., Vol. 64, Issue 7 (2019), p. 1237-1256, DOI 10.1080/17476933.2018.1514029
  19. B. Bieganowski: The fractional Schrödinger equation with Hardy-type potentials and sign-changing nonlinearities,
    Nonlinear Analysis, Vol. 176 (2018), p. 117-140 DOI 10.1016/
  20. B. Bieganowski, T. Cieślak, K. Fujie, T. Senba: Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system,
    Math. Nachr., Vol. 292, Issue 4 (2019), p. 724-732, DOI 10.1002/mana.201800175
  21. B. Bieganowski: Solutions of the fractional Schrödinger equation with a sign-changing nonlinearity,
    J. Math. Anal. Appl., Vol. 450, Issue 1 (2017), p. 461-479 DOI 10.1016/j.jmaa.2017.01.037
  22. B. Bieganowski, J. Mederski: Nonlinear Schrödinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities,
    Commun. Pure Appl. Anal., Vol. 17, Issue 1 (2018), p. 143-161 DOI 10.3934/cpaa.2018009

Selected achievements:



Teaching (in polish):
Rok 2021/2022: Rok 2019/2020: Rok 2018/2019: Rok 2017/2018: Rok 2016/2017: Rok 2015/2016:

Valid XHTML 1.0 Transitional