Sonata grant: Variational Problems with Singularities Arising from Mathematical Physics
Main scientific tasks of the project
Einstein scalar field equations of Lichnerowicz type
Problems on noncompact manifolds
General singular nonlinearities
Related Schrödinger and Helmholtz equations on manifolds
Normalized problems
Nonlinear, singular Schrödinger equations
Critical Hardy potentials
Berestycki-Lions-type problems
Related curl-curl problems
Singular problems with fractional and higher-order operators
Scientific team
Principal Investigator: Bartosz Bieganowski
Post-doc (from 03.2024 to 02.2026): Daniel Strzelecki
PhD student (from 10.2024 to 09.2025): Adam Konysz
Collaborators involved in the project
Laura Baldelli (Institute of Mathematics, University of Granada)
Pietro d'Avenia (Dipartimento di Meccanica, Matematica e Managemen, Politecnico di Bari)
Jarosław Mederski (Institute of Mathematics, Polish Academy of Sciences)
Jacopo Schino (Faculty of Mathematics, Informatics and Mechanics, University of Warsaw)
Simone Secchi (Dipartimento di Matematica e Applicazioni, Universita' di Milano Bicocca)
Results
F. Bernini, B. Bieganowski, D. Strzelecki: Multiplicity of critical orbits to nonlinear, strongly indefinite functionals with sign-changing nonlinear part, submitted, arXiv:2410.13315
B. Bieganowski, O.H. Miyagaki, J. Schino: Normalized solutions to polyharmonic equations with Hardy-type potentials and exponential critical nonlinearities, submitted, arXiv:2410.05885
L. Baldelli, B. Bieganowski, J. Mederski: Traveling waves for nonlinear Schrödinger equations, submitted, arXiv:2406.03910
F. Bernini, B. Bieganowski, D. Strzelecki: Note on homoclinic solutions to nonautonomous Hamiltonian systems with sign-changing nonlinear part, submitted, arXiv:2405.20908