I. Chlebicka, F. Giannetti, A. Zatorska-Goldstein,
Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth
Adv. Calc. Var. [arxiv]
P. Rybka, T. Lewiński, A. Zatorska-Goldstein,
The Free Material Design problem for stationary heat equation on low dimensional structures
Nonlinearity 36 (2023), no. 8, 4501–4521 [arxiv]
I. Chlebicka, Y. Youn, A. Zatorska-Goldstein,
Wolff potentials and measure data vectorial problems with Orlicz growth
Calc. Var. PDEs 62 (2023), no. 2, Paper No. 64, 41 pp. [download]
I. Chlebicka, F. Giannetti, A. Zatorska-Goldstein,
A note on uniqueness to L^1-data elliptic problems of the Orlicz growth
Coll. Math. 168 (2) (2022) 199-209. [download]
I. Chlebicka, A. Zatorska-Goldstein
Generalized superharmonic functions with strongly nonlinear operator
Potential Analysis 57 (3) (2022) 379-400. [download]
P. Rybka, A. Zatorska-Goldstein,
A stationary heat conduction problem in low dimensional sets in ℝ^N.
Calc. Var. PDEs (2020) 59, no. 1, Paper No. 40, 24 pp.
[download]
A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Goldstein,
Fully anisotropic elliptic problems with minimally integrable data,
Calc. Var. PDEs (2019) 58:186.
[download]
I. Chlebicka, F. Giannetti, A. Zatorska-Goldstein,
Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or L1 data,
J. Math. Anal. Appl. 479 (1) (2019), 185-213.
[download]
I. Chlebicka, P. Gwiazda, A. Zatorska-Goldstein,
Renormalized solutions to parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev’s phenomenon,
J. Differ. Equations 267 (2) (2019), 1129-1166.
[download]
M. Borodzik, P. Goldstein, P. Rybka, A. Zatorska-Goldstein,
Problems on partial differential equations.
Problem Books in Mathematics. Springer, Cham, 2019. xvi+248 pp.
I. Chlebicka, P. Gwiazda, A. Zatorska-Goldstein,
Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev’s phenomenon,
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 36 (5) (2019), 1431-1465.
[download]
I. Chlebicka, A. Zatorska-Goldstein,
Existence of solutions to nonlinear problem with unbounded weights,
J. Evol. Equations 19 (2019), 1-19. [download]
I. Chlebicka, P. Gwiazda, A. Zatorska-Goldstein,
Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak-Orlicz spaces in the class of renormalized solutions,
J. Differ. Equations 265 (11) (2018), 5716-5766.
[download]
P. Goldstein, A. Zatorska-Goldstein,
Uhlenbeck's decomposition in Sobolev and Morrey-Sobolev spaces.
Results Math. 73 (2018), no. 2, Paper No. 71, 31 pp.
[download]
P. Gwiazda, I. Skrzypczak, A. Zatorska-Goldstein,
Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space,
J. Differ. Equations 264 (1) (2018), 341-377.
[download]
I. Skrzypczak, A. Zatorska-Goldstein,
Existence of solutions to nonlinear problem with two weights,
Coll. Math. 152 (2018), 199-215.
[download]
P. Goldstein,P. Strzelecki, A. Zatorska-Goldstein,
Weak compactness of solutions for fourth order elliptic systems with critical growth.
Studia Math. 214 (2013), no. 2, 137--156.
[download]
O.E. Maasalo, A. Zatorska-Goldstein,
A note on global integrability of upper gradients of p-superharmonic functions.
Colloq. Math. 117 (2009), no. 2, 281--288.
[download]
P. Goldstein, P. Strzelecki, A. Zatorska-Goldstein,
On polyharmonic maps into spheres in the critical dimension.
Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 4, 1387--1405.
[download]
G. Mingione, A. Zatorska-Goldstein, X. Zhong,
Gradient regularity for elliptic equations in the Heisenberg group.
Adv. Math. 222 (2009), no. 1, 62--129.
[download]
P. Goldstein, A. Zatorska-Goldstein,
Calderon-Zygmund type estimates for nonlinear systems with quadratic growth on the Heisenberg group.
Forum Math. 20 (2008), no. 4, 679--710.
[download]
P. Strzelecki, A. Zatorska-Goldstein,
On a nonlinear fourth order elliptic system with critical growth in first order derivatives.
Adv. Calc. Var. 1 (2008), no. 2, 205--222.
[download]
O.E. Maasalo, A. Zatorska-Goldstein,
Stability of quasiminimizers of the p-Dirichlet integral with varying p on metric spaces.
J. Lond. Math. Soc. (2) 77 (2008), no. 3, 771--788.
[download]
J. Habermann, A. Zatorska-Goldstein,
ORegularity for minimizers of functionals with nonstandard growth by 𝒜-harmonic approximation..
NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 1-2, 169--194.
[download]
G. Mingione, A. Zatorska-Goldstein, X. Zhong,
On the regularity of p-harmonic functions in the Heisenberg group..
Boll. Unione Mat. Ital. (9) 1 (2008), no. 1, 243--253.
V. Bögelein, A. Zatorska-Goldstein,
Higher integrability of very weak solutions of systems of p(x)-Laplacean type.
J. Math. Anal. Appl. 336 (2007), no. 1, 480--497.
[download]
P. Gwiazda, A. Zatorska-Goldstein,
On elliptic and parabolic systems with x-dependent multivalued graphs.
Math. Methods Appl. Sci. 30 (2007), no. 2, 213--236.
[download]
A. Zatorska-Goldstein, P. Strzelecki
Convergence of weak solutions of the equation of hypersurface with prescribed mean curvature.
Mathematical approach to nonlinear phenomena: modelling, analysis and simulations, 321--327, GAKUTO Internat. Ser. Math. Sci. Appl., 23, Gakkōtosho, Tokyo, 2005.
A. Zatorska-Goldstein,
Very weak solutions of nonlinear subelliptic equations.
Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 407--436.
[download]
P. Gwiazda, A. Zatorska-Goldstein,
An existence result for Leray-Lions type operators with discontinuous coefficients.
Asymptot. Anal. 43 (2005), no. 3, 249--265.
P. Gwiazda, A. Zatorska-Goldstein,
Existence via compactness for maximal monotone elliptic operators.
C. R. Math. Acad. Sci. Paris 340 (2005), no. 7, 489--492.
[download]
A. Zatorska-Goldstein, P. Strzelecki
A compactness theorem for weak solutions of higher-dimensional H-systems.
Duke Math. J. 121 (2004), no. 2, 269--284.
[download]