ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIANSKI

9. PRZECHOWYWANIE DANYCH - DRZEWA

W poprzedniej czesci poréwnywalismy efektywnosé przechowywania danych przy uzyciu
roznych struktur. Zaleta list jest mozliwos¢ szybkiego usuwania i dodawania danych — nie
wymaga ono przepisywania elementow. Zaletg tablic uporzadkowanych jest mozliwos¢ szyb-
kiego (tj. w czasie logarytmicznym) znajdowania elementéw. W tym odcinku poznamy sposdb
na efektywne przechowywanie danych taczacy zalety tablic i list.

9.1. Drzewa. Podobnie jak listy, drzewa sktadaja sie z elementéw. Kazdy element zawiera:

e wartos¢,
e wskaznik do lewego poddrzewa,

e wskaznik do prawego poddrzewa.

Przyktadowe drzewo wyglada tak:

Dostep do elementow drzewa uzyskujemy przez wskaznik do najwyzszego elementu, zwanego
korzeniem (brazowy). Drzewo moze by¢ puste; element drzewa taki, ze jego oba poddrzewa
sa puste nazywa sie li§émi (zielone). Oczywiscie moze sie zdarzy¢, ze jedno z poddrzew jest
puste, a drugie nie (tak jak element z wartoscia 8 na przykladzie).

Drzewa sg uzywane do réznych celéw; my bedziemy ich uzywaé do przechowywania danych.
Dlatego tez bedziemy dbac¢ o to, zeby w naszych drzewach byla zachowana nastepujaca

zasada:
1

2 KRZYSZTOF ZIEMIANSKI

Wszystkie wartosci elementow z lewego poddrzewa sg mniejsze, a elementow z prawego
poddrzewa wieksze niz wartosé¢ w korzeniu.

Bedziemy tez dopuszczaé tylko jeden element z dana wartoscia.

9.2. Implementacja. Elementy drzewa beda zdefiniowane jako struktury

class ElDrzewa {
public:
ElDrzewa(int _dane, ElDrzewa* _lewy=nullptr, ElDrzewa* _prawy=nullptr)
: dane(_dane), lewy(_lewy), prawy(_prawy) {}
int dane;
ElDrzewa* lewy;
ElDrzewa* prawy;

}s

Typ Drzewo definujemy jako wskaznik do E1Drzewa. Ponizej przeglad operacji na drzewach:

9.3. Dodawanie elementéw. Dodawanie elementu z wartoscia w przebiega nastepujaco:

(1) Jesli drzewo jest puste, zastepujemy je jednoelementowym drzewem w wartoscia w.
(2) Jesli warto$¢ w korzeniu wynosi w, nic nie robimy (element juz jest).

(3) Jesli warto$¢ w korzeniu jest mniejsza niz w, dodajemy element z wartoscia w do
prawego poddrzewa (rekurencyjnie).

(4) Jesli warto$¢ w korzeniu jest wieksza niz w, dodajemy element z wartoscia w do lewego
poddrzewa.

Ostatecznie jesli elementu nie ma w drzewie, w pewnym miejscu dodamy nowy li$¢ z odpo-
wiednig wartoscig. Jest tylko jedno miejsce, ktore nie psuje porzadku w drzewie.
Ponizej funkcja, ktéra dodaje element.

void dodaj(Drzewo& d, int wartosc) {
if (d==nullptr) {
d = new ElDrzewa(wartosc);

}
else {
if (d->dane < wartosc)
dodaj(d->prawy, wartosc);
if (d->dane > wartosc)
dodaj(d->lewy, wartosc);
}
}

}

Ztozonosé tej operacji jest nie wieksza niz wysoko$¢ drzewa, tj. dhugosé ciggu kolejnych
poddrzew. W drzewie z przyktadu wysokos¢ wynosi 3 (bo najdtuzszy ciag elementéow to
5—-8—T7).

ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 3

9.4. Wyszukiwanie elementéw. Wyszukiwanie elementéw bardzo przypomina wyszuki-
wanie binarne; korzen jest traktowany jako ”Srodkowy” element. Zeby znalezé element o
wartosci w, postepujemy tak:

(1) Jesli drzewo jest puste, nie ma takiego elementu.
(2) Jesli wartos¢ w korzeniu wynosi w, wlasnie go znalezliSmy.
(3) Jesli wartos¢ w korzeniu jest mniejsza niz w, szukamy w prawym poddrzewie.

(4) Jesli wartos¢ w korzeniu jest wigksza niz w, szukamy w lewym poddrzewie.

Funkcja ta jest pozostawiona jako ¢wiczenie. Ztozonos¢ tej operacji jest, podobnie jak w
przypadku dodawania, proporcjonalna do wysokosci drzewa.

9.5. Usuwanie elementéw. Zeby usunaé element trzeba go najpierw znalezé — robimy to
jak powyzej. Jesli odnaleziony element jest lisciem, usunaé¢ go tatwo; gorzej, jesli element,
ktory powinnismy usungé¢ ma poddrzewa. Problem ten rozwigzujemy nastepujaco:

(1) Jesli lewe poddrzewo jest niepuste, usuwamy z niego najwickszy element i wpisujemy
jego wartos¢ do elementu, ktory mamy usuna¢.

(2) Jesli lewe poddrzewo jest puste, a prawe niepuste, usuwamy z prawego poddrzewa
nagmniejszy element i nadpisujemy jego wartoscig wartosc¢, ktora chcemy usunac.

W ten sposéb zachowujemy uporzadkowanie drzewa. Ztozono$c¢ jest ponownie proporcjonalna
do wysokosci drzewa.

9.6. Zréwnowazenie drzewa. Zlozonos¢ wszystkich operacje na danych jest proporcjonal-
na do wysokosci drzewa. Czy gwarantuje to, ze jest ona istotnie mniejsza niz liczba wszyt-
skich elementéw drzewa? Niestety, tak nie jest. Latwo zobaczy¢, ze jesli dodajemy do drzewa
wartosci w kolejnosci rosnacej (lub malejacej) otrzymujemy cos takiego

a wiec wysoko$¢ drzewa jest réwna liczbie jego elementéw (a samo drzewo przypomina liste
jednokierunkowa). Musimy wiec zadbaé o to, aby drzewo bylo ”zréwnowazone” | tj. zeby lewe

4 KRZYSZTOF ZIEMIANSKI

i prawe poddrzewa byty podobnej wielkosci. Wtedy wysokosé drzewa bedzie nie wieksza
niz logarytm z liczby elementéw (z doktadnoscia do stalej). Drzewo bedziemy uwazaé za
zrownowazone jesli wysokosci lewego i prawego poddrzewa kazdego elementu réznig sie nie
wiecej niz o 1.

Zatozmy, ze po wykonaniu pewnej operacji drzewo staje si¢ niezrownowazone, tj. wysokosé
prawego poddrzewa staje sie wieksza o 2 od wysokosci lewego poddrzewa (lub na odwrot).
Wtedy mozemy je zréwnowazy¢ wykonujac jedng z ponizszych zamian:

Jesli B nie jest wyzsze niz C, dostajemy drzewo zrownowazone. Jesli B jest wyzsze od C,
dokonujemy zamiany jak ponizej:

W ten sposdb mozemy (w czasie nie wiekszym niz wysokosé drzewa) zagwarantowad, ze drze-
wo pozostaje zrownowazone. Zrownowazone drzewa uporzadkowane umozliwiajg na przecho-
wywanie danych tak, aby wszystkie operacje bylty wykonywane w czasie nie wiekszym niz

ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 5

logarytmiczny ze wzgledu na liczbe elementéw. Efektywne rownowazenie drzew wymaga pa-
mietania wysokosci kazdego poddrzewa.

9.7. Zadania.
(1) Napisaé¢ funkcje
int ile(Drzewo& d);
ktora zwraca liczbe elementéow w drzewie.
(2) Napisa¢ funkcje
int suma(Drzewo& d);
ktéra zwraca sume wartosci zapisanych w drzewie.
(3) Napisa¢ funkcje
int wysokosc(Drzewo& d);
ktora zwraca wysokosé drzewa.
(4) Napisa¢ funkcje
bool czyZawiera(Drzewo& d);

ktora zwraca true tylko wtedy, gdy dane drzewo zawiera podang wartos¢ w jednym
z elementéw. Zaktadamy, ze drzewo jest uporzadkowane.

(5) Napisa¢ funkcje
void lustro(Drzewo& d);
ktora zamienia porzadek w drzewie z rosnacego na malejacy (lub na odwrét).

(6) (*) Doda¢ do klasy E1Drzewa pole wysokosc, ktore bedzie przechowywaé wysokosé
drzewa (tj. 1 jesli dany element jest lisciem, 2 jesli jego poddrzewa to lidcie, itd.)
Zadbaé o to, aby wartos¢ tego pola ustawiala sie automatycznie po kazdej zmianie w
drzewie.

(7) (**) Zmieni¢ funkcje dodajace i usuwajace elementy tak, aby drzewo po kazdej ope-
racji byto zréwnowazone.

