
ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIAŃSKI

9. Przechowywanie danych - drzewa

W poprzedniej części porównywaliśmy efektywność przechowywania danych przy użyciu
różnych struktur. Zaletą list jest możliwość szybkiego usuwania i dodawania danych — nie
wymaga ono przepisywania elementów. Zaletą tablic uporządkowanych jest możliwość szyb-
kiego (tj. w czasie logarytmicznym) znajdowania elementów. W tym odcinku poznamy sposób
na efektywne przechowywanie danych łączący zalety tablic i list.

9.1. Drzewa. Podobnie jak listy, drzewa składają się z elementów. Każdy element zawiera:

• wartość,

• wskaźnik do lewego poddrzewa,

• wskaźnik do prawego poddrzewa.

Przykładowe drzewo wygląda tak:

5

3 8

7

Dostęp do elementów drzewa uzyskujemy przez wskaźnik do najwyższego elementu, zwanego
korzeniem (brązowy). Drzewo może być puste; element drzewa taki, że jego oba poddrzewa
są puste nazywa się liśćmi (zielone). Oczywiście może się zdarzyć, że jedno z poddrzew jest
puste, a drugie nie (tak jak element z wartością 8 na przykładzie).
Drzewa są używane do różnych celów; my będziemy ich używać do przechowywania danych.
Dlatego też będziemy dbać o to, żeby w naszych drzewach była zachowana następująca
zasada:

1

2 KRZYSZTOF ZIEMIAŃSKI

Wszystkie wartości elementów z lewego poddrzewa są mniejsze, a elementów z prawego
poddrzewa większe niż wartość w korzeniu.

Będziemy też dopuszczać tylko jeden element z daną wartością.

9.2. Implementacja. Elementy drzewa będą zdefiniowane jako struktury

class ElDrzewa {
public:
ElDrzewa(int _dane, ElDrzewa* _lewy=nullptr, ElDrzewa* _prawy=nullptr)
: dane(_dane), lewy(_lewy), prawy(_prawy) {}

int dane;
ElDrzewa* lewy;
ElDrzewa* prawy;

};

Typ Drzewo definujemy jako wskaźnik do ElDrzewa. Poniżej przegląd operacji na drzewach:

9.3. Dodawanie elementów. Dodawanie elementu z wartością w przebiega następująco:

(1) Jeśli drzewo jest puste, zastępujemy je jednoelementowym drzewem w wartością w.

(2) Jeśli wartość w korzeniu wynosi w, nic nie robimy (element już jest).

(3) Jeśli wartość w korzeniu jest mniejsza niż w, dodajemy element z wartością w do
prawego poddrzewa (rekurencyjnie).

(4) Jeśli wartość w korzeniu jest większa niż w, dodajemy element z wartością w do lewego
poddrzewa.

Ostatecznie jeśli elementu nie ma w drzewie, w pewnym miejscu dodamy nowy liść z odpo-
wiednią wartością. Jest tylko jedno miejsce, które nie psuje porządku w drzewie.
Poniżej funkcja, która dodaje element.

void dodaj(Drzewo& d, int wartosc) {
if(d==nullptr) {
d = new ElDrzewa(wartosc);

}
else {
if(d->dane < wartosc)
dodaj(d->prawy, wartosc);

if(d->dane > wartosc)
dodaj(d->lewy, wartosc);

}
}

}

Złożoność tej operacji jest nie większa niż wysokość drzewa, tj. długość ciągu kolejnych
poddrzew. W drzewie z przykładu wysokość wynosi 3 (bo najdłuższy ciąg elementów to
5→ 8→ 7).

ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 3

9.4. Wyszukiwanie elementów. Wyszukiwanie elementów bardzo przypomina wyszuki-
wanie binarne; korzeń jest traktowany jako ”środkowy” element. Żeby znaleźć element o
wartości w, postępujemy tak:

(1) Jeśli drzewo jest puste, nie ma takiego elementu.

(2) Jeśli wartość w korzeniu wynosi w, właśnie go znaleźliśmy.

(3) Jeśli wartość w korzeniu jest mniejsza niż w, szukamy w prawym poddrzewie.

(4) Jeśli wartość w korzeniu jest większa niż w, szukamy w lewym poddrzewie.

Funkcja ta jest pozostawiona jako ćwiczenie. Złożoność tej operacji jest, podobnie jak w
przypadku dodawania, proporcjonalna do wysokości drzewa.

9.5. Usuwanie elementów. Żeby usunąć element trzeba go najpierw znaleźć — robimy to
jak powyżej. Jeśli odnaleziony element jest liściem, usunąć go łatwo; gorzej, jeśli element,
który powinniśmy usunąć ma poddrzewa. Problem ten rozwiązujemy następująco:

(1) Jeśli lewe poddrzewo jest niepuste, usuwamy z niego największy element i wpisujemy
jego wartość do elementu, który mamy usunąć.

(2) Jeśli lewe poddrzewo jest puste, a prawe niepuste, usuwamy z prawego poddrzewa
najmniejszy element i nadpisujemy jego wartością wartość, którą chcemy usunąć.

W ten sposób zachowujemy uporządkowanie drzewa. Złożoność jest ponownie proporcjonalna
do wysokości drzewa.

9.6. Zrównoważenie drzewa. Złożoność wszystkich operacje na danych jest proporcjonal-
na do wysokości drzewa. Czy gwarantuje to, że jest ona istotnie mniejsza niż liczba wszyt-
skich elementów drzewa? Niestety, tak nie jest. Łatwo zobaczyć, że jeśli dodajemy do drzewa
wartości w kolejności rosnącej (lub malejącej) otrzymujemy coś takiego

1

2

3

4

a więc wysokość drzewa jest równa liczbie jego elementów (a samo drzewo przypomina listę
jednokierunkową). Musimy więc zadbać o to, aby drzewo było ”zrównoważone”, tj. żeby lewe

4 KRZYSZTOF ZIEMIAŃSKI

i prawe poddrzewa były podobnej wielkości. Wtedy wysokość drzewa będzie nie większa
niż logarytm z liczby elementów (z dokładnością do stałej). Drzewo będziemy uważać za
zrównoważone jeśli wysokości lewego i prawego poddrzewa każdego elementu różnią się nie
więcej niż o 1.
Załóżmy, że po wykonaniu pewnej operacji drzewo staje się niezrównoważone, tj. wysokość
prawego poddrzewa staje się większa o 2 od wysokości lewego poddrzewa (lub na odwrót).
Wtedy możemy je zrównoważyć wykonując jedną z poniższych zamian:

x

y

A

B C

x

y

A
B

C

Jeśli B nie jest wyższe niż C, dostajemy drzewo zrównoważone. Jeśli B jest wyższe od C,
dokonujemy zamiany jak poniżej:

x

y

zA

B

C

D

x y

z

A B CD

W ten sposób możemy (w czasie nie większym niż wysokość drzewa) zagwarantować, że drze-
wo pozostaje zrównoważone. Zrównoważone drzewa uporządkowane umożliwiają na przecho-
wywanie danych tak, aby wszystkie operacje były wykonywane w czasie nie większym niż

ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 5

logarytmiczny ze względu na liczbę elementów. Efektywne równoważenie drzew wymaga pa-
miętania wysokości każdego poddrzewa.

9.7. Zadania.

(1) Napisać funkcję

int ile(Drzewo& d);

która zwraca liczbę elementów w drzewie.

(2) Napisać funkcję

int suma(Drzewo& d);

która zwraca sumę wartości zapisanych w drzewie.

(3) Napisać funkcję

int wysokosc(Drzewo& d);

która zwraca wysokość drzewa.

(4) Napisać funkcję

bool czyZawiera(Drzewo& d);

która zwraca true tylko wtedy, gdy dane drzewo zawiera podaną wartość w jednym
z elementów. Zakładamy, że drzewo jest uporządkowane.

(5) Napisać funkcję

void lustro(Drzewo& d);

która zamienia porządek w drzewie z rosnącego na malejący (lub na odwrót).

(6) (*) Dodać do klasy ElDrzewa pole wysokosc, które będzie przechowywać wysokość
drzewa (tj. 1 jeśli dany element jest liściem, 2 jeśli jego poddrzewa to liście, itd.)
Zadbać o to, aby wartość tego pola ustawiała się automatycznie po każdej zmianie w
drzewie.

(7) (**) Zmienić funkcje dodające i usuwające elementy tak, aby drzewo po każdej ope-
racji było zrównoważone.

