
ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIAŃSKI

8. Listy dwukierunkowe

Listy jednokierunkowe są proste, ale mają pewne wady. Trudno jest znaleźć element po-
przedzający dany element: wymaga to przeglądnięcia całej listy od początku. Podobnie jest
w przypadku, gdy chcemy skasować pewien element; nie wystarczy nam posiadanie wskaźni-
ka do tego elementu, potrzebujemy wskaźnika do elementu poprzedniego. Czasem wygodniej
jest więc zapisywać w elemencie nie tylko wskaźnik do następnego, ale również do poprzed-
niego elementu; takie listy to listy dwukierunkowe.
Poniżej przykładowa lista dwukierunkowa.

6 2 9

pierwszy

ostatni

nullptr

nullptr

Każdy element zawiera wartość, wskaźnik do następnego elementu (w prawo) oraz wskaź-
nik do poprzedniego elementu (w lewo). Jeśli następnego (lub poprzedniego) elementu nie
ma, odpowiedni wskaźnik ma wartość nullptr.

8.1. Implementacja. Listy jednostronne na poprzednich zajęciach były zrealizowane po
prostu jako wskaźniki do elementów (typ Lista był synonimem ElListy*). Implementacja
listy dwustronnych będzie bardziej skomplikowana, ale też bardziej zbliżona to profesjonal-
nych implementacji. Używamy trzech klas:

• ElListy: pojedynczy element listy; będzie to klasa prywatna używana tylko przez
pozostałe dwie.

• ListaDw: obiekt reprezentujący listę; przechowuje wskaźniki do pierwszego i ostat-
niego elementu listy.

• Iterator: obiekt służacy do przeglądania i modyfikacji list.

Oto definicja klasy ElListy:
class ElListy {
private:
ElListy(ElListy* _nast, ElListy* _popr, int _dane)
: nast(_nast), popr(_popr), dane(_dane) {}

ElListy* nast;
ElListy* popr;
int dane;

1



2 KRZYSZTOF ZIEMIAŃSKI

friend class ListaDw;
friend class Iterator;

};

Proszę zauważyć, że wszystkie pola i konstruktor są prywatne, tj. nie można ich używać poza
klasą z wyjątkiem klas ListaDw i Iterator, którym na to jawnie zezwalamy.
Następnie definiujemy klasę Iterator:

class Iterator {
public:
int& operator*() { return p->dane; }
void operator++() { p=p->nast; }
void operator--() { p=p->popr; }
operator bool() { return p!=nullptr; }
int usun();
void dodaj(int w);

private:
Iterator(ElListy* _p, ListaDw* _lista): p(_p), lista(_lista) {}
ElListy* p;
ListaDw* lista;
friend class ListaDw;

};

Każdy iterator wskazuje pewien element pewnej listy: wskaźnik p to ten element, a lista
to wskaźnik do listy po której się poruszamy. Możliwe też jest, że iterator wskazuje na ”nic”
w swojej liście (wtedy p==nullptr). Na iteratorze iter dozwolone są następujące operacje:

• *iter to wartość wskazywana, można na nią coś przypisać,

• ++iter przesuwa operator na następny element (jeśli byliśmy na ostatnim elemencie,
to na nullptr),

• --iter przesuwa operator na poprzedni element (jeśli byliśmy na pierwszym elemen-
cie, to na nullptr),

• if(iter) { ... } wykona się tylko, jeśli iterator na coś wskazuje (jest automatyczna
konwersja z typu Iterator na typ bool),

• iter.usun() usuwa wskazywany element (iterator przestawia się na następny),

• iter.dodaj(n) wstawia nowy element z wartością n po wskazywanym elemencie.

Konstruktor jest prywatny, co oznacza, że iteratory może tworzyć tylko zaprzyjaźniona klasa
ListaDw.
Na koniec klasa ListaDw:

class ListaDw {
public:
ListaDw(): pierwszy(nullptr), ostatni(nullptr) {}
~ListaDw() { while(!pusta()) usunPierwszy(); }
void dodajPierwszy(int w);



ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 3

int usunPierwszy();
bool pusta() { return pierwszy==nullptr; }
Iterator poczatek() { return Iterator(pierwszy, this); }
Iterator koniec() { return Iterator(ostatni, this); }

private:
ElListy* pierwszy;
ElListy* ostatni;
friend class Iterator;

};

Lista pozwala na wykonanie pewnych operacji (np. można dodawać i usuwać elementy na
początku i sprawdzać, czy lista jest pusta), ale najważniejsza jest możliwość tworzenia ite-
ratorów: poczatek() zwraca iterator wskazujący na początek listy, a koniec() na koniec
listy.
Dzięki temu, że iterator posiada konwersję na bool łatwo przeglądać listę do przodu:

for(Iterator i=lista.poczatek(); i; ++i)
cout << *i << "->";

lub do tyłu:

for(Iterator i=lista.koniec(); i; --i)
cout << *i << "<-";

8.2. Zadania.

(1) Dodać do klasy ListaDw metodę

void dlugosc();

która zwraca liczbę elementów listy.

(2) Napisać funkcję

bool rosnaca(ListaDw& l);

która zwraca true tylko wtedy, gdy elementy na liście są w kolejności rosnącej.

(3) Napisać funkcję

bool takieSame(ListaDw& l, ListaDw& m);

która zwraca true wtedy i tylko wtedy, gdy obie listy mają takie same elementy w
takiej samej kolejności.

(4) Napisać funkcję

void ostatniBedaPierwszymi(ListaDw& l);

która przestawia ostatni element listy na początek.

(5) Dodać do klasy ListaDw metodę



4 KRZYSZTOF ZIEMIAŃSKI

void doklej(ListaDw& m);

która dokleja listę m na końcu listy. Kolejność elementów powinna być zachowana.
Po wykonaniu tej operacji lista m powinna być pusta, a jej elementy wykorzystane w
liście wywołującej metodę doklej.

(6) Napisać funkcję

void podwoj(ListaDw& l);

która podwaja każdy element (np. lista 2->3->5-> zamienia się na 2->2->3->3->5->5->).

(7) Dodać do klasy ListaDw konstruktor kopiujący

ListaDw(const ListaDw& m);

który tworzy kopię listy. Oczywiście należy stworzyć nowe elementy listy.


