ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIANSKI

8. LISTY DWUKIERUNKOWE

Listy jednokierunkowe sg proste, ale maja pewne wady. Trudno jest znalez¢ element po-
przedzajacy dany element: wymaga to przegladniecia catej listy od poczatku. Podobnie jest
w przypadku, gdy chcemy skasowaé pewien element; nie wystarczy nam posiadanie wskazni-
ka do tego elementu, potrzebujemy wskaznika do elementu poprzedniego. Czasem wygodniej
jest wiec zapisywa¢ w elemencie nie tylko wskaznik do nastepnego, ale réwniez do poprzed-
niego elementu; takie listy to listy dwukierunkowe.

Ponizej przyktadowa lista dwukierunkowa.

pierwszy nullptr
6 2 9
o . . : @
nullptr ostatni

Kazdy element zawiera wartosé, wskaznik do nastepnego elementu (w prawo) oraz wskaz-
nik do poprzedniego elementu (w lewo). Jesli nastepnego (lub poprzedniego) elementu nie
ma, odpowiedni wskaznik ma wartos¢ nullptr.

8.1. Implementacja. Listy jednostronne na poprzednich zajeciach byty zrealizowane po
prostu jako wskazniki do elementéw (typ Lista byl synonimem E1Listy*). Implementacja
listy dwustronnych bedzie bardziej skomplikowana, ale tez bardziej zblizona to profesjonal-
nych implementacji. Uzywamy trzech klas:

e ElListy: pojedynczy element listy; bedzie to klasa prywatna uzywana tylko przez
pozostate dwie.

e ListaDw: obiekt reprezentujacy liste; przechowuje wskazniki do pierwszego i ostat-
niego elementu listy.

e Iterator: obiekt stuzacy do przegladania i modyfikacji list.

Oto definicja klasy E1Listy:

class ElListy {
private:
ElListy(ElListy* _nast, ElListy* _popr, int _dane)
: nast(_nast), popr(_popr), dane(_dane) {}
ElListy* nast;
ElListy* popr;
int dane;

2 KRZYSZTOF ZIEMIANSKI

friend class ListaDw;
friend class Iterator;

};

Prosz¢ zauwazy¢, ze wszystkie pola i konstruktor sg prywatne, tj. nie mozna ich uzywac poza
klasa z wyjatkiem klas ListaDw i Iterator, ktérym na to jawnie zezwalamy.
Nastepnie definiujemy klase Iterator

class Iterator {

public:
int& operator*() { return p->dane; }
void operator++() { p=p->nast; }
void operator--() { p=p->popr; }
operator bool() { return p!=nullptr; }
int usun();
void dodaj(int w);

private:
Iterator(ElListy* _p, ListaDwx _lista): p(_p), lista(_lista) {}
ElListy* p;
ListaDw* lista;
friend class ListaDw;

};

Kazdy iterator wskazuje pewien element pewnej listy: wskaznik p to ten element, a lista
to wskaznik do listy po ktorej si¢ poruszamy. Mozliwe tez jest, ze iterator wskazuje na "nic”
w swojej liscie (wtedy p==nullptr). Na iteratorze iter dozwolone sa nastepujace operacje:

e *iter to wartos¢ wskazywana, mozna na nig co$ przypisac,

e ++iter przesuwa operator na nastepny element (jesli byliémy na ostatnim elemencie,
to na nullptr),

e —-iter przesuwa operator na poprzedni element (jesli byliSmy na pierwszym elemen-
cie, to na nullptr),

e if(iter) { ... } wykonasie tylko, jesliiterator na co$ wskazuje (jest automatyczna
konwersja z typu Iterator na typ bool),

e iter.usun() usuwa wskazywany element (iterator przestawia si¢ na nastepny),

e iter.dodaj(n) wstawia nowy element z warto$ciag n po wskazywanym elemencie.

Konstruktor jest prywatny, co oznacza, ze iteratory moze tworzy¢ tylko zaprzyjazniona klasa
ListaDw.
Na koniec klasa ListaDw:

class ListaDw {

public:
ListaDw(): pierwszy(nullptr), ostatni(nullptr) {}
“ListaDw() { while(!pusta()) usunPierwszy(); }
void dodajPierwszy(int w);

ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 3

int usunPierwszy();

bool pusta() { return pierwszy==nullptr; }

Iterator poczatek() { return Iterator(pierwszy, this); }

Iterator koniec() { return Iterator(ostatni, this); }
private:

ElListy* pierwszy;

ElListy* ostatni;

friend class Iterator;
+;
Lista pozwala na wykonanie pewnych operacji (np. mozna dodawaé i usuwaé elementy na
poczatku i sprawdzaé, czy lista jest pusta), ale najwazniejsza jest mozliwosé tworzenia ite-
ratoréw: poczatek() zwraca iterator wskazujacy na poczatek listy, a koniec() na koniec
listy.

Dzieki temu, ze iterator posiada konwersje na bool tatwo przegladaé liste do przodu:

for(Iterator i=lista.poczatek(); i; ++i)
cout << *i << "->",

lub do tytu:

for(Iterator i=lista.koniec(); i; --1i)
cout << *i << "<-"

8.2. Zadania.
(1) Dodaé do klasy ListaDw metode

void dlugosc();
ktora zwraca liczbe elementow listy.
(2) Napisa¢ funkcje
bool rosnaca(ListaDw& 1);
ktora zwraca true tylko wtedy, gdy elementy na liScie sa w kolejnosci rosnacej.
(3) Napisa¢ funkcje
bool takieSame(ListaDw& 1, ListaDw& m);

ktora zwraca true wtedy i tylko wtedy, gdy obie listy maja takie same elementy w
takiej samej kolejnosci.

(4) Napisa¢ funkcje
void ostatniBedaPierwszymi(ListaDw& 1) ;
ktora przestawia ostatni element listy na poczatek.

(5) Doda¢ do klasy ListaDw metode

KRZYSZTOF ZIEMIANSKI
void doklej(ListaDw& m);

ktora dokleja liste m na koncu listy. Kolejnosé elementéw powinna byé¢ zachowana.
Po wykonaniu tej operacji lista m powinna by¢ pusta, a jej elementy wykorzystane w
liScie wywotujacej metode doklej.

(6) Napisa¢ funkcje
void podwoj(ListaDw& 1);
ktéra podwaja kazdy element (np. lista 2->3->5-> zamienia si¢ na 2->2->3->3->5->5->).
(7) Doda¢ do klasy ListaDw konstruktor kopiujacy
ListaDw(const ListaDw& m);

ktory tworzy kopie listy. Oczywiscie nalezy stworzy¢ nowe elementy listy.

