ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIANSKI

13. GRY

13.1. Gra w patyczki. Gra w patyczki to gra dla dwoch oséb. W grze uzywa si¢ patyczkow,
ktore leza na kilku stosach. Gracze na przemian wykonujg ruchy; kazdy ruch polega na
zdjeciu pewnej liczby patyczkéw (przynajmniej jednego) z jednego ze stoséw. Gracz, ktéry
zostanie zmuszony do zdjecia ostatniego patyczka przegrywa. Naszym celem bedzie napisanie
programu, ktéry gra (dobrze) w patyczki.

Aktualny stan gry mozna zapisa¢ jako cigg liczb, np. 7531 oznacza, ze w danym momencie
mamy cztery stosy: na jednym jest 7, na drugim 5, a trzecim 3, a na ostatnim 1 patyczek.
Ruchy bedziemy zapisywac za pomocy strzalek z zaznaczonym graczem wykonujacym ruch.
Przyktadowy przebieg partii:

7531 4 6531 2. 6131 L 611 B 111 A 11 B 1 Ao

W pierwszym ruchu gracz A zabiera jeden patyczek z pierwszego stosu, w drugim ruchu B
zabiera 4 patyczki ze stosu 2. Nastepnie gracz A zabiera wszystkie patyczki ze stosu 3, a gracz
B — 5 patyczkow ze stosu 1. Nastepne ruchy sa wymuszone: kazdy z graczy musi zabiera¢ po
jednym patyczku. Przegrywa gracz A, ktory jest zmuszony do zabrania ostatniego patyczka.

13.2. Jak odréznié¢ dobry ruch od zltego? Jaki ruch wybra¢? Na pewno dobre sg ruchy,
ktore pozostawiaja na planszy tylko jeden patyczek: przeciwnik bedzie zmuszony go zabraé
i przegra. Inaczej mowiac, stan 1 jest przegrywajacy: jesli sic w nim znajdziemy to prze-
gramy. Stany 11, 21, 31, 2, 3 sg natomiast wygrywajace, bo mozemy wykona¢ ruch, ktory
prowadzi do stanu przegrywajacego. Oczywiscie znalezienie si¢ w stanie wygrywajacym nie
gwarantuje zwyciestwa — mozemy popetni¢ btad i wybra¢ ruch prowadzacy do stanu wy-
grywajacego i wtedy przeciwnik dostanie swoja szans¢. Na przyktad ze stanu 31 mozemy
wykonaé¢ ruchy do stanéw 3, 21, 111 1, ale tylko ten ostatni ruch jest dobry. Widzimy wiec,
ze kluczowa jest wiedza, ktore stany sa wygrywajace.
Przyjmujemy, ze stan 0 jest wygrywajacy (jesli sie w nim znalezlismy, to juz wygraliSmy).
Mozemy wiec rodzaj stanu wyliczy¢ przy pomocy nastepujacego algorytmu rekurencyjnego:
bool wygrywa(Stan s) {
if (s==0)
return true;
for(t: istnieje ruch z s do t)
if (lwygrywa(t)) // t jest przegrywajacy
return true;
return false; // nie znalezlismy dobrego ruchu

}

Oczywiscie warunek “istnieje ruch z s do t” nalezy odpowiednio zaimplementowac.
1



2 KRZYSZTOF ZIEMIANSKI

Kiedy mamy juz wiedze o tym, ktore stany wygrywaja, mozemy napisa¢ program, ktory
dobrze gra. Jedli jesteSmy w stanie wygrywajacym, przechodzimy do stanu przegrywajacego
(dla przeciwnika), jesli nie, wykonujemy dowolny ruch i liczymy na btad (pewnie w praktyce
dobrze jest zdjac jak najmniej patyczkow).

13.3. Ograniczenia. Powyzszy algorytm mozna zastosowaé¢ do kazdej dwuosobowej gry z
pelna informacja. Przyktadami takich gier sa szachy, warcaby oraz Go. Uzywajac funkcji
wygrywa opisanej powyzej mozna napisa¢ program, ktéry bedzie grat optymalnie w kazda
w tych gier. Jedynym (ale za to powaznym) problemem jest to, ze raczej nie doczekamy sie
na zakonczenie dziatania tej funkcji, bo liczba stanéw do przeanalizowania jest zbyt duza.
W przypadku gry w patyczki (o ile patyczkéw jest nie wiecej niz kilkanascie) funkcja dziata
zadowalajaco szybko. Mozna jej dziatanie nieco przyspieszy¢:

e Latwo zauwazy¢, ze rodzaj wielu stanow jest wyliczany wielokrotnie. Mozna temu
zapobiec zapisujac raz wyliczone stany w tablicy (tak jak w lekcji o rekurencji).

e Zamiana kolejnosci stoséw nie wplywa na to, czy stan jest wygrywajacy czy prze-
grywajacy (np. oba stany 31 1 13 sa wygrywajace). Wystarczy wiec zapisywaé tylko
"posortowane” stany.

Wprowadzenie tych zmian oczywiscie wiaze sie ze znaczng komplikacja programu.
13.4. Zadania.

(1) Zmodyfikowaé program tak, aby umozliwial gre w patyczki z komputerem.

(2) Zaimplementowaé jaka$ inna gre dla dwdch graczy.



	13. Gry
	13.1. Gra w patyczki
	13.2. Jak odróżnić dobry ruch od złego?
	13.3. Ograniczenia
	13.4. Zadania


