
ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIAŃSKI

13. Gry

13.1. Gra w patyczki. Gra w patyczki to gra dla dwóch osób. W grze używa się patyczków,
które leżą na kilku stosach. Gracze na przemian wykonują ruchy; każdy ruch polega na
zdjęciu pewnej liczby patyczków (przynajmniej jednego) z jednego ze stosów. Gracz, który
zostanie zmuszony do zdjęcia ostatniego patyczka przegrywa. Naszym celem będzie napisanie
programu, który gra (dobrze) w patyczki.
Aktualny stan gry można zapisać jako ciąg liczb, np. 7531 oznacza, że w danym momencie
mamy cztery stosy: na jednym jest 7, na drugim 5, a trzecim 3, a na ostatnim 1 patyczek.
Ruchy będziemy zapisywać za pomocą strzałek z zaznaczonym graczem wykonującym ruch.
Przykładowy przebieg partii:

7531
A−→ 6531 B−→ 6131 A−→ 611 B−→ 111 A−→ 11 B−→ 1 A−→ 0

W pierwszym ruchu gracz A zabiera jeden patyczek z pierwszego stosu, w drugim ruchu B
zabiera 4 patyczki ze stosu 2. Następnie gracz A zabiera wszystkie patyczki ze stosu 3, a gracz
B — 5 patyczków ze stosu 1. Następne ruchy są wymuszone: każdy z graczy musi zabierać po
jednym patyczku. Przegrywa gracz A, który jest zmuszony do zabrania ostatniego patyczka.

13.2. Jak odróżnić dobry ruch od złego? Jaki ruch wybrać? Na pewno dobre są ruchy,
które pozostawiają na planszy tylko jeden patyczek: przeciwnik będzie zmuszony go zabrać
i przegra. Inaczej mówiąc, stan 1 jest przegrywający: jeśli się w nim znajdziemy to prze-
gramy. Stany 11, 21, 31, 2, 3 są natomiast wygrywające, bo możemy wykonać ruch, który
prowadzi do stanu przegrywającego. Oczywiście znalezienie się w stanie wygrywającym nie
gwarantuje zwycięstwa — możemy popełnić błąd i wybrać ruch prowadzący do stanu wy-
grywającego i wtedy przeciwnik dostanie swoją szansę. Na przykład ze stanu 31 możemy
wykonać ruchy do stanów 3, 21, 11 i 1, ale tylko ten ostatni ruch jest dobry. Widzimy więc,
że kluczowa jest wiedza, które stany są wygrywające.
Przyjmujemy, że stan 0 jest wygrywający (jeśli się w nim znaleźliśmy, to już wygraliśmy).
Możemy więc rodzaj stanu wyliczyć przy pomocy następującego algorytmu rekurencyjnego:

bool wygrywa(Stan s) {
if(s==0)
return true;

for(t: istnieje ruch z s do t)
if(!wygrywa(t)) // t jest przegrywający
return true;

return false; // nie znaleźliśmy dobrego ruchu
}

Oczywiście warunek “istnieje ruch z s do t” należy odpowiednio zaimplementować.
1



2 KRZYSZTOF ZIEMIAŃSKI

Kiedy mamy już wiedzę o tym, które stany wygrywają, możemy napisać program, który
dobrze gra. Jeśli jesteśmy w stanie wygrywającym, przechodzimy do stanu przegrywającego
(dla przeciwnika), jeśli nie, wykonujemy dowolny ruch i liczymy na błąd (pewnie w praktyce
dobrze jest zdjąc jak najmniej patyczków).

13.3. Ograniczenia. Powyższy algorytm można zastosować do każdej dwuosobowej gry z
pełną informacją. Przykładami takich gier są szachy, warcaby oraz Go. Używając funkcji
wygrywa opisanej powyżej można napisać program, który będzie grał optymalnie w każdą
w tych gier. Jedynym (ale za to poważnym) problemem jest to, że raczej nie doczekamy się
na zakończenie działania tej funkcji, bo liczba stanów do przeanalizowania jest zbyt duża.
W przypadku gry w patyczki (o ile patyczków jest nie więcej niż kilkanaście) funkcja działa
zadowalająco szybko. Można jej działanie nieco przyspieszyć:

• Łatwo zauważyć, że rodzaj wielu stanów jest wyliczany wielokrotnie. Można temu
zapobiec zapisując raz wyliczone stany w tablicy (tak jak w lekcji o rekurencji).

• Zamiana kolejności stosów nie wpływa na to, czy stan jest wygrywający czy prze-
grywający (np. oba stany 31 i 13 są wygrywające). Wystarczy więc zapisywać tylko
”posortowane” stany.

Wprowadzenie tych zmian oczywiście wiąże się ze znaczną komplikacją programu.

13.4. Zadania.

(1) Zmodyfikować program tak, aby umożliwiał grę w patyczki z komputerem.

(2) Zaimplementować jakąś inną grę dla dwóch graczy.


	13. Gry
	13.1. Gra w patyczki
	13.2. Jak odróżnić dobry ruch od złego?
	13.3. Ograniczenia
	13.4. Zadania


