
ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIAŃSKI

12. Grafy

Graf to obiekt, który składa się ze

• zbioru wierzchołków V

• zbioru krawędzi : każda para wierzchołków albo jest połączona krawędzią albo nie jest.

Przykładowy graf:

A B

C

DE

F

G

H

Tematem tych zajęć będzie implementacja klasy Graf, której obiektami będą grafy. Wierz-
chołki będą obiektami pewnego wybranego typu; zależy na na tym, aby nie ograniczać się
np. do typu int (tak, jak to robiliśmy w przypadku list). Stworzymy więc wzorzec klas, a
nie pojedynczą klasę. Przykładem takiego wzorca jest vector: w C++ każdy wektor musi
mieć przypisany konkretny typ elementów, które się w nim znajdują.

12.1. Wzorce. Prostym przykładem funkcji jest funkcja zwracająca większy z dwóch para-
metrów:
int max(int a, int b) {
if(a>b)
return a;

else
return b;

}

Ta funkcja będzie działać dla parametrów typu int, ale jeśli będziemy potrzebować funkcji
zwracającej większą z dwóch liczb typu double albo napisów (string) musimy napisać
osobną funkcję dla każdego typu, która będzie prawie identyczna. Wzorce to sposób na
zmuszenie kompilatora, aby sam sobie stworzył taką funkcję. Poniższy kod zawiera definicję
odpowiedniego wzorca:
template <class T>
T max(T a, T b) {

1



2 KRZYSZTOF ZIEMIAŃSKI

if(a>b)
return a;

else
return b;

}

Deklaracja template <class T> oznacza, że bezpośrednio następująca funkcja (lub klasa)
jest wzorcem zależnym od pewnego typu T. Teraz możemy wywoływać funkcję max dla pa-
rametrów dowolnych typów — pod warunkiem, że oba parametry są tego samego typu i są
porównywalne (tj. działa dla nich operator >). Kompilator sam stworzy potrzebną funkcję w
razie potrzeby.
Można też tworzyć klasy parametryzowane pewnym typem. Przykładowa definicja wzorca
klasy Punkt, gdzie parametrem jest typ współrzędnej punktu:

template <class T>
class Punkt {
public:
Punkt(T _x, T _y): x(_x), y(_y) {}
void przesun(T dx, T dy) { x+=dx; y+=dy; }
void drukuj();
T x;
T y;

};

template <class T>
void Punkt<T>::drukuj() {
cout << "(" << x << "," << y << ")";

}

Teraz możemy wybierać, jakiego typu będą współrzędne punktu, np. deklaracje

Punkt<int> p;
Punkt<double> q;

stworzą punkty o różnych typach współrzędnych.
Uwaga: jeśli definiujemy metody ”poza” klasą, musimy powtórzyć deklarację template
przed definiowaną funkcją.

12.2. Wzorzec Graf. Klasa Graf<T> będzie miała następujące metody:

• Graf(); konstruktor, tworzy pusty graf (bez wierzchołków),

• void dodaj(T nowy); dodaje nowy wierzchołek o podanej nazwie,

• void polacz(T v1, T v2); dodaje połączenie pomiędzy podanymi wierzchołkami,

• bool zawiera(T v); sprawdza, czy graf zawiera dany wierzchołek,

• bool polaczone(T v1, T v2); sprawdza, czy wierzchołki są połączone,

• vector<T> listaWierzcholkow(); zwraca listę wierzchołków grafu,



ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 3

• vector<T> listaSasiadow(T v); zwraca listę wierzchołków połączonych z poda-
nym wierzchołkiem,

• void polaczLosowo(double p); każda para wierzchołków zostaje połączona z praw-
dopodobieństwem p.

Każdy wierzchołek grafu posiada dwa unikalne identyfikatory:

• publiczny (zwany dalej nazwą) — typu T, używany przez użytkownika klasy Graf<T>,

• wewnętrzny (zwany dalej numerem) — typu int, używany tylko w metodach klasy.
Dbamy o to, aby były to kolejne numery 0,1,. . . ,n-1.

W tablicy nazwy znajduje się przyporządkowanie numerom wierzchołków ich nazw, czyli
wierzchołek o numerze k ma identyfikator publiczny t[k]. Do tłumaczenia nazw na numery
służy funkcja indeks, która zwraca -1 jeśli wierzchołek o podanej nazwie nie istnieje.
Połączenia pomiędzy wierzchołkami są zapamiętywane w dwuwymiarowej tablicy tab:
tab[k][l] jest prawdą, gdy istnieje połaczenie pomiędzy wierzchołkami o numerach k i l
(a fałszem jeśli takiego połączenia nie ma).

12.3. Zadania. Należy uzupełnić klasę Graf o następujące metody:

(1) void usunPolaczenie(T v1, T v2); usuwa połączenie pomiedzy podanymi wierz-
chołkami; jeśli takich nie ma, nic się nie dzieje.

(2) int liczbaKrawedzi(); zwraca liczbę wszystkich krawędzi w grafie.

(3) void usunWierzcholek(T v); usuwa wierzchołek o podanej nazwie (o ile istnieje).

(4) bool spojny(); zwraca true jeśli graf jest spójny, tzn. z każde dwa wierzchołki są
połączne za pomocą krawędzi (być może nie bezpośrednio).


