
ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024)

KRZYSZTOF ZIEMIAŃSKI

10. Wyrażenia arytmetyczne

Celem tych zajęć będzie stworzenie prostego kalkulatora, który po wczytaniu tekstu za-
wierającego wyrażenie arytmetyczne obliczy jego wartość. Np. po wpisaniu
3+4*(5+1)

otrzymamy wartość 27. Kalkulator będzie operował na liczbach całkowitych nieujemnych i
obsługował działania +, * oraz nawiasy. Wyliczanie odbywa się w dwóch krokach. Najpierw
tworzymy reprezentację wyrażenia, a potem je wyliczamy korzystając z tej reprezentacji.

10.1. Reprezentacja wyrażeń. Wyrażenia będą reprezentowane za pomocą drzew. Przy-
kładowe wyrażenie podane powyżej będzie wyglądało tak:

+

3 ∗

4 +

5 1

Jak widzimy będziemy potrzebować trzech rodzajów węzłów:

• stałych liczbowych,

• sum,

• iloczynów.

Poszczególnym rodzajom węzłów będą odpowiadać różne klasy; z drugiej strony jednak
wszystkie te rodzaje reprezentują wyrażenia. Zdefiniujemy je więc jako klasy pochodne klasy
reprezentującej wszystkie wyrażenia.

10.2. Dziedziczenie — klasy pochodne. Jeśli A jest pewną klasą, to możemy zdefiniować
jej klasę pochodną B:

1



2 KRZYSZTOF ZIEMIAŃSKI

class B: public A {
// deklaracje pól i metod

};

Obiekt klasy B będzie zawierał wszystkie pola zadeklarowane w klasie A i ponadto pola
zadeklarowane w klasie B. Podobnie jest z metodami: możemy używać zarówno metod za-
deklarowanych z klasie A jak i tych z klasy B. Najważniejszym mechanizmem związanym
z dziedziczeniem klas jest możliwość ponownego zdefiniowania funkcji w klasie pochodnej.
Wtedy działanie tej funkcji będzie zależało od rzeczywistego typu obiektu; dla obiektów typu
A funkcja będzie działała tak jak zdefiniowano to w klasie A, a dla obiektów typu B, tak jak
w klasie B. Takie funkcje nazywamy wirtualnymi; jeśli chcemy, żeby funkcja była wirtualna,
jej deklarację poprzedzamy słowem virtual.
W tym przykładzie definiujemy klasę Punkt.
class Punkt {
public:
Punkt(double _x, double _y): x(_x), y(_y) {}
double x;
double y;
virtual void drukuj() {
cout << "(" << x << "," << y << ")";

}
};

Następnie definiujemy jej klasę pochodną
class KolorowyPunkt: public Punkt {
public:
KolorowyPunkt(double _x, double _y, string kolor)
: Punkt(_x, _y), kolor(_kolor) {}

string kolor;
virtual void drukuj() {
cout << "(" << x << "," << y << ") Kolor: " << kolor;

}
};

Proszę zauważyć, że w konstruktorze klasy KolorowyPunkt musimy podać parametry do
pewnego konstruktora klasy Punkt. O oto przykład użycia:
Punkt* p=new Punkt(2,5);
p->drukuj(); // drukuje bez koloru
delete p;
p=new KolorowyPunkt(3,7,"czarny");
p->drukuj(); // a teraz z kolorem
delete p;

Musimy korzystać ze wskaźników—wskaźnik do typu Punktmoże wskazywać na KolorowyPunkt,
ale do statycznej zmiennej typu Punkt nie możemy przypisać kolorowego punktu (tj. możemy,
ale informacja o kolorze zostanie utracona).

10.3. Wyrażenia. Wyrażenia arytmetyczne będą reprezentowane przez klasę
class Wyrazenie {



ZAAWANSOWANE PROGRAMOWANIE KOMPUTEROWE WNE (2024) 3

public:
virtual int wartosc()=0;
virtual void drukuj()=0;

};

Wyrażenia można drukować i obliczać ich wartość, ale obie te czynności są niezdefiniowane.
Nie możemy wydrukować ”ogólnego” wyrażenia, bo nie wiem czym ono jest; nie możemy
nawet stworzyć obiektu tej klasy. Takie klasy nazywają się klasami abstrakcyjnymi. Można
ich użyć tylko do zdefiniowania klas pochodnych. Klasa reprezentująca stałe liczbowe to
class Stala: public Wyrazenie {
public:
Stala(int _a): a(_a) {}
virtual int wartosc() { return a; }
virtual void drukuj() { cout << a; }

private:
int a;

};

Obiekty tej klasy możemy już tworzyć, drukować i wyliczać ich wartości (choć nie jest to
szczególnie interesujące). Pożytek z klas pochodnych można zauważyć na przykładzie kolejnej
klasy reprezentującej sumy wyrażeń:
class Suma: public Wyrazenie {
public:
Suma(Wyrazenie* _w1, Wyrazenie* _w2): w1(_w1), w2(_w2) { }
virtual ~Suma() { delete w1; delete w2; }
virtual int wartosc() { return w1->wartosc() + w2->wartosc(); }
virtual void drukuj() {
cout << "(";
w1->drukuj();
cout << "+";
w2->drukuj();
cout << ")";

}
private:
Wyrazenie* w1;
Wyrazenie* w2;

};

Obiekt klasy Suma reprezentuje sumę dwóch dowolnych wyrażeń: stałych, sum, iloczynów, a
nawet innego rodzaju wyrażeń (wystarczy stworzyć nowe klasy pochodne klasy Wyrazenie).
Wartość sumy obliczy sie jako suma wartości wyrażeń wskazywanych przez w1 i w2, które to
wyrażenia oblicza się z kolei we właściwy dla siebie sposób.

10.4. Strumienie. Wyrażenia arytmetyczne będziemy wczytywać ze strumienia (typu istream),
przykładem takiego strumienia jest cin. Można też wczytywań wyrażenia z napisów typu
string np. tak
string s("2+2*(7+2)");
stringstream ss(s); // tworzymy strumień podłączony do napisu
w = czytajWyrazenie(ss); // używamy ss jak cin



4 KRZYSZTOF ZIEMIAŃSKI

Wymaga to załączenia biblioteki sstream. Znaki wczytujemy za pomocą metod get:
f.get(c);

wczytuje znak ze strumienia f i umieszcza go w zmiennej c, oraz z funkcji peek:
f.peek();

zwraca kolejny znak ze strumienia, ale go nie pobiera; funkcja peek może zwrócić wartość
EOF, co oznacza, że w strumieniu nie ma już więcej znaków.

10.5. Gramatyki, czyli jak wczytywać wyrażenia. Poprawne wyrażenia arytmetyczne
można opisać za pomocą następującego przepisu (nazywa się to gramatyką):

Wyrażenie→ Składnik | Składnik+ Wyrażenie
Składnik→ Czynnik | Czynnik ∗ Składnik
Czynnik→ Stała | (Wyrażenie)

Inaczej mówiąć, każde wyrażenie jest sumą składników, każdy składnik jest iloczynem czyn-
ników, a każdy czynnik jest ”atomowym” wyrażeniem: liczbą lub wyrażeniem zamkniętym
w nawiasy. Funkcje wczytujące wyrażenia również są zbudowane wg tego schematu:

• Funkcja czytajWyrazenie czyta składnik, następnie sprawdza, czy kolejnym znakiem
jest +; jeśli tak, czyta wyrażenie i zwraca sumę składnika i wyrażenia; jeśli nie, zwraca
tylko wyrażenie.

• Funkcja czytajSkladnik czyta czynnik, następnie sprawdza, czy kolejnym znakiem
jest *; jeśli tak, czyta składnik i zwraca iloczyn czynnika i składnika; jeśli nie, zwraca
tylko czynnik.

• Funkcja czytajCzynnik sprawdza, co jest pierwszym znakiem. Jeśli to nawias, czyta
nawias, wyrażenie i nawias zamykający. Jeśli to cyfra, wczytuje liczbę. Jeśli żadne z
powyższych, wypisuje się komunikat o błędzie.

Wynikiem działania tych funkcji jest wskaźnik do wczytanego wyrażenia.

10.6. Zadania.

(1) Zmienić klasy Suma i Iloczyn tak, aby przechowywały sumy złożone z więcej niż
dwóch składników (iloczyny wielu czynników).

(2) Dodać obsługę liczb ujemnych i odejmowania.


	9. Wyrażenia arytmetyczne
	9.1. Reprezentacja wyrażeń
	9.2. Dziedziczenie — klasy pochodne
	9.3. Wyrażenia
	9.4. Strumienie
	9.5. Gramatyki, czyli jak wczytywać wyrażenia
	9.6. Zadania


