R

Woprowadzenie Klasa nadrzedna Klasy podrzedne
90000000 0000000 00000
: :

Zaawansowane programowanie komputerowe

Symulacja — podstawy dziedziczenia

Dorota Celinska-Kopczynska
Uniwersytet Warszawski

Zajecia
31 marca 2025

Tytut Uniwersytet Warszawski
e

Woprowadzenie
©0000000

Programowanie obiektowe

» Na programowanie obiektowe mozna patrze¢ jako na
symulowanie rozwazanego $wiata:
> agenci, do ktérych wysyta sie komunikaty
> zobowiazani do realizacji pewnych dziatan
» realizujacy je wg pewnych metod postepowania. Te metody
moga by¢ ukryte przez zlecajacym wykonanie zadania
» Poza komérkami pamieci mamy obiekty (agentéw),
komunikaty i zobowigzania

Tytut Uniwersytet Warszawski

Woprowadzenie
0@000000

Obiekty i klasy

» Obiekt ma swdj wtasny stan (wartosci pewnych zmiennych) i
swoje wtasne zachowanie (operacje)

> Kazdy obiekt jest egzemplarzem pewnej klasy — ona okresla
jego zachowanie

» Zachowanie mozemy obserwowa¢ wysytajac komunikat — w
odpowiedzi obiekt wykona swoja operacje

> Klasy to typy danych, ktére pozwalaja na zgromaczenie w
jednej zmiennej (obiekcie) zarédwno danych, jak i operacji z
nimi zwigzanych

Tytut Uniwersytet Warszawski

Woprowadzenie
00®00000

Dziedziczenie

» Jeden z naistotniejszych elementéw obiektowosci

v

Dziedziczenie umozliwia tworzenie hierarchii klas

P> Klasy odpowiadaja pojeciom wystepujacym w rozwazanym
$wiecie. Hierarchie klas pozwalaja tworzy¢ hierarchie pojeé,
wyrazajac zaleznosci miedzy pojeciami

P Klasa pochodna dziedziczy po klasie bazowej. Klase pochodna

(podklase) tworzymy wéwczas, gdy chcemy opisaé bardziej

wyspecjalizowane obiekty klasy bazowej (nadklasy)

> Kazdy obiekt klasy pochodnej jest tez obiektem klasy bazowej

Tytut Uniwersytet Warszawski

Woprowadzenie Klasa nadrzedna Klasy podrzedne
000®0000 0000000 00000
: :

Zalety dziedziczenia

> Jawne wyrazanie zaleznosci miedzy klasami

v

Zachecanie do ponownego wykorzystania juz napisanego kodu

» Unikanie ponownego pisania tych samych fragmentéw
programu

» Utatwianie znajdowania potrzebnego kodu

> Mozliwo$¢ narzucania jednolitego interfejsu grupy
spokrewnionych klas

: :
Tytut Uniwersytet Warszawski

Woprowadzenie
0000@000

Typy sktadowych

» Sktadowe prywatne — widoczne jedynie w klasie, z ktérej
pochodza i w funkcjach/klasach z nig zaprzyjaznionych

» Sktadowe chronione — widoczne w klasie, z ktérej pochodzg,
w funkcjach/klasach z nig zaprzyjaznionych oraz w klasach
pochodnych oraz funkcjach/klasach z nimi zaprzyjaznionych

» Sktadowe publiczne — widoczne wszedzie tam, gdzie jest
widoczna sama klasa

Tytut Uniwersytet Warszawski

Klasa nadrzedna Klasy podrzedne
00

Woprowadzenie
0000000 000
:

00000e00

Zadanie

» Bedziemy szykowaé symulacje, w ktérej rézne typy Studentdw
sg potaczone w zespoty do pracy grupowe;j

» Kazdy student moze wspdtpracowaé lub zdradzi¢ (oszukac)
drugiego studenta

> Kazdy typ studenta ma inng strategie na prace w grupie

:
Uniwersytet Warszawski

Tytut
e

Woprowadzenie Klasa nadrzedna Klasy podrzedne
00000000 0000000 00000

Hierarchia

Student
virtual Ruch graj()
virtual vold reakeja(Ruch ry
virtual void debug()

Student-licznik
Student o diugle] pami (liczy pewne zdarzenia z przesztosci,
(posiada vector pamig kiedy sig wy yiy)

Student o krotkle] pamieci Student bez pamigci
(posiada pole pa (Jego strategia nie zalezy ¢ \
od dziatari przeciwnika)
Msciwy JakMogles
Zapobiegliwy / \ | | (int c)

(bool czy
Altruista | Freerider

| Wat 7a wet |

Tytut Uniwersytet Warszawski

Woprowadzenie
0000000®

Dziedziczenie — nanoszenie hierarchii do kodu

Tytut

» Przepisujemy nazwy klas od najbardziej ogdlnej do najbardziej
szczegbtowych

» Klasy pochodne umieszczamy po ich klasach nadrzednych

P> Po nazwie klasy stawiamy dwukropek i podajemy, ze
dziedziczymy w sposéb publiczny (podajemy klase
bezposrednio nadrzedng w hierarchii)

class Student {

};
class Student_o_dlugiej_pamieci: public Student {

};
class Zapobiegliwy: public Student_o_dlugiej_pamieci {

};

Uniwersytet Warszawski

Woprowadzenie Klasa nadrzedna Klasy podrzedne
00000000 9000000 00000
: :

Metody klasy nadrzedne;j

» Metody moga by¢ wirtualne (virtual — zostang doprecyzowane
w klasach podrzednych) lub nie (wtedy dziataja tak samo dla
wszystkich klas podrzednych)

class Student {
public:
// metody wirtualne -- zostana doprecyzowane w klasach pochodnych
virtual Ruch graj() = 0;
virtual void reakcja(Ruch r) = 0;
virtual void debug() {};
virtual “Student() {};

Tytut Uniwersytet Warszawski
e

Klasa nadrzedna
0®00000

Metody abstrakcyjne

> = 0 — taka metoda musi zostaé¢ doprecyzowana dla wszystkich
klas pochodnych

» Bez przedefiniowania tej metody nie mozna stworzy¢ obiektu
danej klasy

» Przyktad — metody Ruch graj() nie trzeba bytoby definiowaé
dla “Student licznik”, ale Msciwy (ktérego chcemy stworzy¢)

musi te metode miec przedefiniowang
class Student {

public:
// metody wirtualne -- zostana doprecyzowane w klasach pochodnych
// =0 -- musza zostac doprecyzowane dla klas pochodnych

virtual Ruch graj() = 0;

virtual void reakcja(Ruch r) = 0;
virtual void debug() {};

virtual ~Student() {};

Tytut Uniwersytet Warszawski

Klasa nadrzedna
00®0000

Jak rozpoznaé problem z metodami abstrakcyjnymi?

» Zakomentuje metode graj() dla klasy Msciwy — kompilator jej
nie znajduje

@archeopteryx ~ cd Documen
@archeopteryx /mat_poic++/
tion ‘int main()’
invalid new-expression of abstract class type ‘Msciwy’
b = new

1ote: because the following virtual functions are pure within ‘Msciwy’:
: public Student licznik {

‘virtual Ruch Student::graj()’

@archeopteryx ../mat_poic++/materialy/zajeciale-11 [|

Tytut Uniwersytet Warszawski

Klasa nadrzedna
0008000

Metoda debug|()

> Metoda czysto techniczna, zeby mogli Panstwo sprawdzad,
czy kod poprawnie dziata

» Napisanie getteréw dla klasy podrzednej nie zadziata (gdyby
nimi chcieli Panstwo sprawdza¢ wartosci pdl publicznych),
debug() domyslnie nie ma by¢ definiowany (ale moze)

class Student {
public:
virtual Ruch graj() = 0;
virtual void reakcja(Ruch r) = 0;
// metoda ponizej domyslnie nic nie robi, definiowanie jest opcjonalne
// przydaje sie do sprawdzenia poprawnosci dzialania kodu
virtual void debug() {};
virtual “Student() {};

Tytut Uniwersytet Warszawski

Klasa nadrzedna
0000@00

Wirtualny destruktor

Tytut

» Nie musimy definiowa¢ wtasnych destruktoréw dla klas
pochodnych, domysine wystarcza.

» Ale musimy zdefiniowa¢ wirtualny destruktor

> Jak destruktor klasy nadrzednej nie jest wirtualny, usunie sie
obiekt klasy nadrzednej (tutaj Student) a nie obiekt wtasciwej
klasy (np. Altruista)

class Student {
public:
virtual Ruch graj() = 0;
virtual void reakcja(Ruch r) = 0;
virtual void debug() {};
// bez wirtualnego destruktora obiekty beda sie blednie usuwac
virtual ~“Student() {};

Uniwersytet Warszawski

Klasa nadrzedna
0000000

Wirtualny destruktor

P Tutaj zdefiniowany wirtualny destruktor — wszystko dziata

@archeopteryx ../mat_poic++/materialy/zajeciale-11 g++ dylemat.cpp -fsaniti r -0 dyl
@archeopteryx ../mat_poic++/materialy/zajeciale-11 L/dyl

../mat_poic++/materialy/zajeciale-

@archeopteryx
@archeopteryx

" new_delete.cpp:172
140x2507)

long) /build/

Addresssanitizer: new-delete-type-mi ib X (unsigned long)
INT: if you don't care nisna

73==ABORTING

@archeopteryx

Tytut Uniwersytet Warszawski

Klasa nadrzedna
000000®

Kopiowania

» Kwestia kopiowan przy dziedziczeniu w C++ jest dosy¢
skomplikowana

P> Tutaj na razie pominiemy ten aspekt — wystarczy nam
domyslna implementacja reguty trzech

» Przypomnienie: Reguta trzech — jesli czujemy sie w obowiazku
zdefiniowa¢ samodzielnie ktérykolwiek sposréd tréjki:
destruktor, konstruktor kopiujacy, kopiujacy operator
przypisania, powinnismy odnie$¢ sie do pozostatych dwéch

Tytut Uniwersytet Warszawski

Klasy podrzedne
©0000

Widocznos¢ pol

> Metody i pola private z klasy nadrzednej nie beda mogty
by¢ wykorzystane przez obiekty klasy podrzedne;j

» Zeby umozliwi¢ klasom podrzednym posiadanie wspélnego
pola (np. w naszym wypadku typu pamieci) deklarujemy je
jako protected

» Przy definiowaniu nowych pdl domysine konstruktory moga
juz nie wystarczy¢

class Student_o_dlugiej_pamieci: public Student {
protected:
// wszystkie klasy, dla ktorych ta klasa jest nadrzedna beda mogly
// korzystac z tego pola
vector<Ruch> pamiec;
public:
Student_o_dlugiej_pamieci() = default;
void reakcja(Ruch r) override {pamiec.push_back(r);};

Tytut Uniwersytet Warszawski

Klasy podrzedne
00000

Override

» Gdy doprecyzowujemy metode w klasie podrzednej warto
oznaczy¢ ja jako override (to nie jest obowigzkowe)

» Gdybysmy popetnili literéwke/btad w nagtéwku takiej metody,
kompilator bardzo tatwo to znajdzie

class Student_o_dlugiej_pamieci: public Student {
protected:
vector<Ruch> pamiec;
public:
Student_o_dlugiej_pamieci() = default;
// Reakcja jest taka sama dla studentow o dlugiej pamieci
void reakcja(Ruch r) override {pamiec.push_back(r);};

};

Tytut Uniwersytet Warszawski

Override

> Zrezygnuje z override w klasie Msciwy (nic ztego)

Tytut

@archeopteryx
@archeopteryx

@archeopteryx

urxve
@archeopteryx ..
dylemat.cpp
dylemat.cpp:119:22
19 | Student b = new
|
dytenat.cpp:92:7: not
| class Msciwy: public
! "
dylenat.cpp
18

/mat_poic++/materialy, ia16-11
/mat_poics+

mat_poice+/materialy

/nat_poict+/mate
In function ‘int m
invalid new-expression of abstract c

terialy

zajectale-11 A Il

g++ d
ain()’

the following virtual functions

dent L

“virtual Ruch Student::graj()

| 1rtua Ruch graj) =

|

urxvt
marcheop!eryx /mat
dylenat.c :

() override {return w;}

poic++/materialy/zajeciale-11 A ges
Ruch Msciwy::Graj()’ marked ‘overrid

§ In function 'int main()-

22
Students b

1id new-expression of abstr

g++ dylemat
g

ddress

ylemat.cpp -fsaniti

ass type ‘Msciwy’

are pure within ‘Msciwy

dylemat.cpp -fsanitiz
e’, but does not overrid

lass type ‘Msciwy’

following virtual functions are pure within ‘Msciwy’:

¢ Stagent Ucznik {

virtual Ruch Student::graj()
0

y/zajeciate-11 A |

o dyl

-0 dyl

Klasy podrzedne
00®00

Uniwersytet Warszawski

Woprowadzenie Klasa nadrzedna Klasy podrzedne
00000000 0000000 00000
: :

Jak tworzy¢ (i kasowac) obiekty?

» Obiekty klasy pochodnej tworzymy z wykorzystaniem new,
ktére przypisuje na wskaznik do klasy bazowe]

> Nawet przy obecno$ci wirtualnego destrutora wskaznik do
klasy bazowej musimy jeszcze usungé

Student* a = new Altruista;

a->graj();

delete a

: :
Tytut Uniwersytet Warszawski

s

Sprzatanie

P Tutaj i wirtualny destruktor, i skasowanie wskaznika

» Tutaj brak

Tytut

@archeopteryx
@archeopteryx

@archeopteryx
@archeopteryx ..

#0 ox7fedogcaz
#1 0x5564810a047¢
#2 0x7fed096d0b24

#0 ox7fedogcazcal
0X556481020497
#2 0x7fed096d0b24

#6 6x7fedo9cazcal
#1 0x556481020358
#2 0x7fedo96dob2

#0 ox7fedescazcal

5564810a02eb
#2 0x77ed096d0b24
SUMMARY: Addresssanit
archeopteryx

in
in
in

in

in
in
in

in
in
in

./mat_
mat_poicss/materialy/

r

g++ dylemat.cpp -f
“/dyl

+/materia jeciale-11

jeciale-11 A ./dyl

operator new(unsigned long) /build/gcc/src/gee/Uibsanitizer/

g++ dylemat.cpp -fsanitize=address -o dyl

Klasy podrzedne
0000e

-0 dyl

san_new delete

san P
main (/home/tehora/ Darumemsm\,ﬂak(w«armat panurmﬂt»y;av\f,zaj=c131u 11/dyl+6x247e)

libc_start_main (/usr/lib/libc.s

operator new(unsigned long)
main (/home/
libc_start main

/build/gcc/src/gec/1ibsanitizer/asan/asan
tehora/Documents/dydaktyka/mat
(/ust/1ib/libc.50.6+0x27b24)

operator new(unsigned long) /build/gcc/src/gee/Libs
ora/Docunents/dydaktyka/mat_po

start_main (/usr/lib/libc.s0.6+0x27b24)

itizer/asan/as,

operator new(unsigned long)
main (/home/
libe

/build/gcc/src/gec/Uibsaniti
ehora/Docunents/dydaktyka/mat_po:
e moin (Jusr /b1 ibe. 50, 650x27550)

72 byte(s) leaked in 4 allocation(s)
jeciale-11 A

delete.
oicrs/materialy/sajeciaio 11/ dy

] de
++/materialy/zajeciale-11/dyl+6x2358)

ew_de
u/mat‘rlaly"vz]eua)u 11/dytoxz

cpp:
+0x2497)

lete.cp

lete.cpp:

Uniwersytet Warszawski

	Wprowadzenie
	Klasa nadrzędna
	Klasy podrzędne

