
Wprowadzenie Klasa nadrzędna Klasy podrzędne

Zaawansowane programowanie komputerowe
Symulacja – podstawy dziedziczenia

Dorota Celińska-Kopczyńska

Uniwersytet Warszawski

Zajęcia
31 marca 2025

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Programowanie obiektowe

▶ Na programowanie obiektowe można patrzeć jako na
symulowanie rozważanego świata:
▶ agenci, do których wysyła się komunikaty
▶ zobowiązani do realizacji pewnych działań
▶ realizujący je wg pewnych metod postępowania. Te metody
mogą być ukryte przez zlecającym wykonanie zadania

▶ Poza komórkami pamięci mamy obiekty (agentów),
komunikaty i zobowiązania

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Obiekty i klasy

▶ Obiekt ma swój własny stan (wartości pewnych zmiennych) i
swoje własne zachowanie (operacje)

▶ Każdy obiekt jest egzemplarzem pewnej klasy – ona określa
jego zachowanie

▶ Zachowanie możemy obserwować wysyłając komunikat – w
odpowiedzi obiekt wykona swoją operację

▶ Klasy to typy danych, które pozwalają na zgromaczenie w
jednej zmiennej (obiekcie) zarówno danych, jak i operacji z
nimi związanych

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Dziedziczenie

▶ Jeden z naistotniejszych elementów obiektowości
▶ Dziedziczenie umożliwia tworzenie hierarchii klas
▶ Klasy odpowiadają pojęciom występującym w rozważanym
świecie. Hierarchie klas pozwalają tworzyć hierarchie pojęć,
wyrażając zależności między pojęciami

▶ Klasa pochodna dziedziczy po klasie bazowej. Klasę pochodną
(podklasę) tworzymy wówczas, gdy chcemy opisać bardziej
wyspecjalizowane obiekty klasy bazowej (nadklasy)

▶ Każdy obiekt klasy pochodnej jest też obiektem klasy bazowej

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Zalety dziedziczenia

▶ Jawne wyrażanie zależności między klasami
▶ Zachęcanie do ponownego wykorzystania już napisanego kodu
▶ Unikanie ponownego pisania tych samych fragmentów
programu

▶ Ułatwianie znajdowania potrzebnego kodu
▶ Możliwość narzucania jednolitego interfejsu grupy
spokrewnionych klas

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Typy składowych

▶ Składowe prywatne – widoczne jedynie w klasie, z której
pochodzą i w funkcjach/klasach z nią zaprzyjaźnionych

▶ Składowe chronione – widoczne w klasie, z której pochodzą,
w funkcjach/klasach z nią zaprzyjaźnionych oraz w klasach
pochodnych oraz funkcjach/klasach z nimi zaprzyjaźnionych

▶ Składowe publiczne – widoczne wszędzie tam, gdzie jest
widoczna sama klasa

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Zadanie

▶ Będziemy szykować symulację, w której różne typy Studentów
są połączone w zespoły do pracy grupowej

▶ Każdy student może współpracować lub zdradzić (oszukać)
drugiego studenta

▶ Każdy typ studenta ma inną strategię na pracę w grupie

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Hierarchia

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Dziedziczenie – nanoszenie hierarchii do kodu

▶ Przepisujemy nazwy klas od najbardziej ogólnej do najbardziej
szczegółowych

▶ Klasy pochodne umieszczamy po ich klasach nadrzędnych
▶ Po nazwie klasy stawiamy dwukropek i podajemy, że
dziedziczymy w sposób publiczny (podajemy klasę
bezpośrednio nadrzędną w hierarchii)

class Student {

};
class Student_o_dlugiej_pamieci: public Student {

};
class Zapobiegliwy: public Student_o_dlugiej_pamieci {

};

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Metody klasy nadrzędnej

▶ Metody mogą być wirtualne (virtual – zostaną doprecyzowane
w klasach podrzędnych) lub nie (wtedy działają tak samo dla
wszystkich klas podrzędnych)

class Student {
public:
// metody wirtualne -- zostana doprecyzowane w klasach pochodnych
virtual Ruch graj() = 0;
virtual void reakcja(Ruch r) = 0;
virtual void debug() {};
virtual ~Student() {};

};

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Metody abstrakcyjne

▶ = 0 – taka metoda musi zostać doprecyzowana dla wszystkich
klas pochodnych

▶ Bez przedefiniowania tej metody nie można stworzyć obiektu
danej klasy

▶ Przykład – metody Ruch graj() nie trzeba byłoby definiować
dla “Student licznik”, ale Mściwy (którego chcemy stworzyć)
musi tę metodę mieć przedefiniowaną

class Student {
public:
// metody wirtualne -- zostana doprecyzowane w klasach pochodnych
// =0 -- musza zostac doprecyzowane dla klas pochodnych
virtual Ruch graj() = 0;
virtual void reakcja(Ruch r) = 0;
virtual void debug() {};
virtual ~Student() {};

};

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Jak rozpoznać problem z metodami abstrakcyjnymi?

▶ Zakomentuję metodę graj() dla klasy Msciwy – kompilator jej
nie znajduje

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Metoda debug()

▶ Metoda czysto techniczna, żeby mogli Państwo sprawdzać,
czy kod poprawnie działa

▶ Napisanie getterów dla klasy podrzędnej nie zadziała (gdyby
nimi chcieli Państwo sprawdzać wartości pól publicznych),
debug() domyślnie nie ma być definiowany (ale może)

class Student {
public:
virtual Ruch graj() = 0;
virtual void reakcja(Ruch r) = 0;
// metoda ponizej domyslnie nic nie robi, definiowanie jest opcjonalne
// przydaje sie do sprawdzenia poprawnosci dzialania kodu
virtual void debug() {};
virtual ~Student() {};

};

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Wirtualny destruktor

▶ Nie musimy definiować własnych destruktorów dla klas
pochodnych, domyślne wystarczą.

▶ Ale musimy zdefiniować wirtualny destruktor
▶ Jak destruktor klasy nadrzędnej nie jest wirtualny, usunie się
obiekt klasy nadrzędnej (tutaj Student) a nie obiekt właściwej
klasy (np. Altruista)

class Student {
public:
virtual Ruch graj() = 0;
virtual void reakcja(Ruch r) = 0;
virtual void debug() {};
// bez wirtualnego destruktora obiekty beda sie blednie usuwac
virtual ~Student() {};

};

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Wirtualny destruktor

▶ Tutaj zdefiniowany wirtualny destruktor – wszystko działa

▶ Tutaj brak wirtualnego destruktora – wycieki pamięci

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Kopiowania

▶ Kwestia kopiowań przy dziedziczeniu w C++ jest dosyć
skomplikowana

▶ Tutaj na razie pominiemy ten aspekt – wystarczy nam
domyślna implementacja reguły trzech

▶ Przypomnienie: Reguła trzech – jeśli czujemy się w obowiązku
zdefiniować samodzielnie którykolwiek spośród trójki:
destruktor, konstruktor kopiujący, kopiujący operator
przypisania, powinniśmy odnieść się do pozostałych dwóch

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Widoczność pól

▶ Metody i pola private z klasy nadrzędnej nie będą mogły
być wykorzystane przez obiekty klasy podrzędnej

▶ Żeby umożliwić klasom podrzędnym posiadanie wspólnego
pola (np. w naszym wypadku typu pamięci) deklarujemy je
jako protected

▶ Przy definiowaniu nowych pól domyślne konstruktory mogą
już nie wystarczyć

class Student_o_dlugiej_pamieci: public Student {
protected:
// wszystkie klasy, dla ktorych ta klasa jest nadrzedna beda mogly
// korzystac z tego pola
vector<Ruch> pamiec;
public:
Student_o_dlugiej_pamieci() = default;
void reakcja(Ruch r) override {pamiec.push_back(r);};

};

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Override

▶ Gdy doprecyzowujemy metodę w klasie podrzędnej warto
oznaczyć ją jako override (to nie jest obowiązkowe)

▶ Gdybyśmy popełnili literówkę/błąd w nagłówku takiej metody,
kompilator bardzo łatwo to znajdzie

class Student_o_dlugiej_pamieci: public Student {
protected:
vector<Ruch> pamiec;
public:
Student_o_dlugiej_pamieci() = default;
// Reakcja jest taka sama dla studentow o dlugiej pamieci
void reakcja(Ruch r) override {pamiec.push_back(r);};

};

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Override
▶ Zrezygnuję z override w klasie Msciwy (nic złego)

▶ Zrezygnuję z override i zrobię literówkę Graj() – kompilator nie rozpoznał metody

▶ Jest override, zrobię literówkę Graj() – kompilator pyta

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Jak tworzyć (i kasować) obiekty?

▶ Obiekty klasy pochodnej tworzymy z wykorzystaniem new,
które przypisuje na wskaźnik do klasy bazowej

▶ Nawet przy obecności wirtualnego destrutora wskaźnik do
klasy bazowej musimy jeszcze usunąć

Student* a = new Altruista;
a->graj();
delete a

Tytuł Uniwersytet Warszawski



Wprowadzenie Klasa nadrzędna Klasy podrzędne

Sprzątanie
▶ Tutaj i wirtualny destruktor, i skasowanie wskaźnika

▶ Tutaj brak skasowania wskaźnika – wycieki pamięci

Tytuł Uniwersytet Warszawski


	Wprowadzenie
	Klasa nadrzędna
	Klasy podrzędne

