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• basic notions

• when reachability is undecidable

• when there is a hope

• what is known

• several examples and challenges

• goal: roadmap and inspiration

Plan



Computation model



Computation model

Turing machine = automaton with unbounded tape



Computation model

Turing machine = automaton with unbounded tape

finite automaton



Computation model

Turing machine = automaton with unbounded tape

finite automaton

pushdown automaton



Computation model

Turing machine = automaton with unbounded tape

finite automaton

pushdown automaton

automaton with counters



Computation model

Turing machine = automaton with unbounded tape

finite automaton

pushdown automaton

automaton with counters

automaton with some structure
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Given: a model, two its configurations s and t

Question: is there a path from s to t?

Central one for a computation model

Why this problem?
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Halting problem for TM

undecidable

the same as reachability problem

what for other models?
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Undecidable models

Automaton with:

• two stacks (simulate tape)

• three zero-tested counters (simulate two stacks) 

• two zero-tested counters (simulate three counters)

• Hilbert’s Tenth Problem easily reduces to 
reachability in automata with zero-tested counters
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<2122> in ternary = 71

<21221> in ternary = 3･71+1

(71,0)

(0,71)

(3･71,0)

(-1,+1)

(+3,-1)

zero-test(x)

zero-test(y)
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Some hopeful restrictions
Automaton with:

• counters without zero-tests

• called VASS (vector addition systems with states)

• just one stack (pushdown automaton)

• one stack plus counters without zero-tests (PVASS)

• ℤ-counters (may drop below zero)

• other structures
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Vector Addition Systems 
with States (VASS)

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7) 

p(4,0,6) 

p(1,1,7) 

q(4,0,7) Petri nets



Complexity of reachability



Complexity of reachability

• VASS: Ackermann-completeness



Complexity of reachability

• VASS: Ackermann-completeness

• d-VASS: in Fd, F3 = Tower 



Complexity of reachability

• VASS: Ackermann-completeness

• d-VASS: in Fd, F3 = Tower 

• 1-VASS: NP-comp. (binary encoding)



Complexity of reachability

• VASS: Ackermann-completeness

• d-VASS: in Fd, F3 = Tower 

• 1-VASS: NP-comp. (binary encoding)

• 2-VASS: PSpace-comp.



Complexity of reachability

• VASS: Ackermann-completeness

• d-VASS: in Fd, F3 = Tower 

• 1-VASS: NP-comp. (binary encoding)

• 2-VASS: PSpace-comp.

• d-VASS, d ≥ 3: unclear



Complexity of reachability

• VASS: Ackermann-completeness

• d-VASS: in Fd, F3 = Tower 

• 1-VASS: NP-comp. (binary encoding)

• 2-VASS: PSpace-comp.

• d-VASS, d ≥ 3: unclear

• 3-VASS: in ExpSpace (?)



Complexity of reachability

• VASS: Ackermann-completeness

• d-VASS: in Fd, F3 = Tower 

• 1-VASS: NP-comp. (binary encoding)

• 2-VASS: PSpace-comp.

• d-VASS, d ≥ 3: unclear

• 3-VASS: in ExpSpace (?)

• 6-VASS: ExpSpace-hard
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Functions Fk

F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

composed n times

F2(n) = 2n F3(n) = Tower(n)

Ack(n) = Fn(n)
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Tool: path length

• 2-VASS: PSpace, shortest path exponential

• 3-VASS: ExpSpace, shortest path doubly-exponential

• 3-VASS: only exponential examples known

• 4-VASS: doubly-exponential example

• Challenge 1: doubly-exponential path example in 3-VASS
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Doubly-exp 4-VASS

(2 / 1) · (3 / 2) ·... · (k / k-1) =  k

Guess: (Nk, N, 0)

Weakly multiply N by fractions, starting from k / k-1

Check equality

exponential example for unary 3-VASS

2-exponential example for binary 4-VASS

(a1 / b1)21 · (a2 / b2)22 ·... · (ak / bk)2k =  a / b
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Higher dimensions

• 8-VASS: Tower-hard

• 8-VASS: tower example

• Challenge 2: tower path example in d-VASS, d ≤ 7

• message: path length important
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Reachability for Pushdown VASS

• general: open

• 1-PVASS: open, PSpace-hard

• 1-PVASS: decidability (?) with Clotilde Bizière

• PVASS not known to be harder than VASS

• equivalent to GVAS

• no example of over-exponential derivation known 
for 1-GVAS

• Ackermann-size reachability set in 1-GVAS
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Challenge

Challenge 3: doubly-exponential example for 1-GVAS

1-GVAS G and s, t ∈ ℕ such that 
minimal derivation from s to t in G is 

doubly-exponential
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X -1 X 2 | 0

k
X

2k

Y -1 Y X | 1

k
Y

2k

Z -1 Z Y | 1

k
Z

Tower(k)

d+1 nonterminals: reachability set of size Fd(n) 

Big reachability set
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ℤ-counters

• general: NP-complete

• systems of linear equations, exponential solution

• VASS + ℤ-counters: interreducible with VASS

• 2-VASS + ℤ-counters: open

• PSpace-hard and in Ackermann

• no example with shortest path over-exponential

• Challenge 4: find an example with 2-exp long path 
for 2-VASS + ℤ-counters
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Other models

• Lin automaton (Anthony Lin)

• one counter with +1, -1, x2, /2 operations

• possibly with zero-tests and parity checks

• decidability open

• exponential path: multiply n times, then decrease

• no example with over-exponential path known

• Challenge 5: find an example with 2-exp long path

• important: find other interesting, decidable models
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Summary

• many open problems

• fundamental ones, may be very hard

• often solvable by bare hands

• direction: look for new, decidable models 

• my opinion: bound minimal path length (often)

• thank you!


