
Algorytmy i Struktury Danych, 11. ćwiczenia

2025-12-17

Zadanie 9.1

a) Niech G będzie grafem n + 1 wierzchołkowym, n > 4, w którym jeden
wierzchołek jest połączony ze wszystkimi innymi, a podgraf rozpięty na
pozostałych n wierzchołkach jest cyklem elementarnym. Ile jest różnych
drzew przeszukiwania w głąb w grafie G – dwa drzewa się różnią, jeśli
istnieje wierzchołek, który w obu drzewach ma różnych rodziców. Opisz
sposób obliczania tej liczby.

b) Niech G = (V,E) będzie grafem dwuspójnym o co najmniej trzech wierz-
chołkach, a u jego wyróżnionym wierzchołkiem. Dobrą orientacją grafu G
z wierzchołka u nazywamy graf skierowany otrzymany z G w następujący
sposób: uruchomiamy algorytm przeszukiwania w głąb z wierzchołka u, a
następnie orientujemy krawędzie drzewa przeszukiwania od ojca do syna,
a krawędzie niedrzewowe od potomka do przodka. Dany jest graf zorien-
towany H z wyróżnionym wierzchołkiem u. Zaproponuj algorytm, który
stwierdzi, czy H jest dobrą orientacją pewnego grafu G z wierzchołka u.

Rozwiązanie:
Punkt a)
Przykładowy graf dla n = 5:

v0

v1

v2

v3

v4

v5

v6

Wynik to: n(n− 1)2 + 2n:

• Przypadek A: 2n dla drzew rozpoczynających się w centrum grafu (korzeń
jest ustalony na v0, możemy na n sposobów wybrać pierwszy wierzchołek z
cyklu vi na dwa sposoby możemy wybrać kierunek w którym kontynuujemy
DFS)

1

v0

vi

v0

vi

Rysunek 1: Przypadek A — 2n różnych drzew

• Przypadek B: n · (n− 1)2 dla drzew rozpoczynających się na cyklu:

– Przypadek B1: 2n ·
∑n−2

j=2 (n−1−j) = 2n ·
∑n−3

k=1 k = n ·(n−2) ·(n−3)

— i ≠ j i (vi, vj) ̸∈ E: zaczynamy w vi idziemy do vj (idąc w lewo lub
w prawo) idziemy do v0 a następnie do vk,

v0

vivj

vk

v0

vi

vk

vj

Rysunek 2: Przypadek B1

– Przypadek B2: 2n · (n− 2)
— i ≠ j i (vi, vj) ∈ E (i używamy tej krawędzi): zaczynamy w vi
idziemy do vj (idąc po 1 krawędzi) idziemy do v0 a następnie do vk,

v0

vi

vjvk

v0

vi

vj

vk

Rysunek 3: Przypadek B2

– Przypadek B3: 2n
— i ̸= j i (vi, vj) ∈ E (i NIE używamy tej krawędzi): zaczynamy w vi
idziemy do vj (idąc po n-1 krawędziach) idziemy do v0 i kończymy

2

v0

vi

vj

v0

vi

vj

Rysunek 4: Przypadek B3

– Przypadek B4: n(n− 1)
— i = j: zaczynamy w vi idziemy do v0 a następnie do vk następnie
DFS odwiedza resztę cyklu.

v0

vivk

Rysunek 5: Przypadek B4

Punkt b)
Wszystkie krawędzie powrotne muszą prowadzić do przodków w drzewie.

Zadanie 9.2
Dane jest drzewo z korzeniem T , które jest DFS-drzewem rozpinającym pew-
nego n-wierzchołkowego grafu G. Wierzchołki drzewa są identyfikowane z ich
numerami DFS wyznaczających kolejność ich pierwszych odwiedzin. Dla każdego
wierzchołka i różnego od korzenia, t[i] jest numerem rodzica i w drzewie T .
Wartość t[.] dla korzenia jest równa 0. Zaproponuj efektywny algorytm, który

a) sprawdzi, czy graf G może być grafem dwuspójnym wierzchołkowo, a jeśli
odpowiedź jest pozytywna, to poda

b) minimalną liczbę krawędzi w grafie G,

c) maksymalną liczbę krawędzi w grafie G.

Rozwiązanie: Punkt a) Jeśli korzeń T ma więcej niż jednego syna to G nie
jest dwuspójny.
Punkt b) każdy liść musi mieć jakąś krawędz powrotną, jeśli połączymy każdy liść
z korzeniem to spełnimy wszystkie warunki dwuspójności, odpowiedź: (n−1+L)
gdzie L to liczba liści.

3

Punkt c) oprócz krawędzi z punktu b możemy dodać wszystkie, które nie naru-
szają DFS, czyli wszystkie do przodków w drzewie DFS.

Zadanie 9.3
Marszrutą w grafie G nazywamy każdy skończony ciąg wierzchołków grafu taki,
że każde dwa kolejne wierzchołki są połączone krawędzią w tym grafie. Marszruta
jest zamknięta, gdy rozpoczyna się i kończy w tym samym wierzchołku.

Powiemy, że graf G jest eulerowski, jeśli istnieje w nim marszruta zamknięta,
w której każda krawędź z grafu pojawia się dokładnie raz. Marszrutę o takiej
własności nazywamy cyklem Eulera.

Zaproponuj algorytm, który w czasie liniowym sprawdza, czy dany graf
nieskierowany jest eulerowski i jeśli tak, to znajduje w nim cykl Eulera.
Rozwiązanie:
Cykl Eulera w grafie skierowanym G istnieje wtedy i tylko wtedy gdy:

• dla każdego wierzchołka v ∈ V (G) mamy indeg(v) = outdeg(v).

• nieskierowana wersja grafu G (tzn. taka w której ignorujemy zwrot krawę-
dzi), jest spójna,

Algorytm:

• C = ∅

• tak długo jak G nie jest pusty, oblicz dowolny cykl i dołącz go do C,

Zadanie 9.4
Dane jest n-wierzchołkowe drzewo z korzeniem T z wagami na krawędziach
(liczby całkowite). Dla każdego wierzchołka v różnego od korzenia dane są rodzic
p[v] w drzewie i waga w[v] krawędzi v− p[v]. Przyjmujemy też, że wierzchołki są
ponumerowane w porządku “preorder” i utożsamiamy je z tymi numerami - v
oznacza zarówno wierzchołek, jak i jego numer.

Zaproponuj algorytm, który w czasie O(n+k) udzieli odpowiedzi na k zapytań
postaci:

W (u; v):: ile wynosi waga ścieżki (suma wag krawędzi na ścieżce) z u do v, gdy
wiadomo, że u jest przodkiem v?

Rozwiązanie:

• policz s[u] — suma waga na krawędziach na ścieżce od u do korzenia,

• W (u, v) = s[v]− s[u]

4

Zadanie 9.5
Kaktusem nazywamy graf, w którym każda dwuspójna składowa jest krawędzią
lub cyklem.

a) Zaprojektuj wydajny czasowo algorytm, który dla danego kaktusa G i
wskazanych wierzchołków u i v obliczy liczbę różnych ścieżek elementarnych
z u do v.

b) Załóżmy, że krawędziom kaktusa przypisano całkowitoliczbowe wagi. Zapro-
jektuj wydajny czasowo algorytm, który w ważonym kaktusie G = (V,E)
znajduje minimalną wagę DFS drzewa rozpinającego zakorzenionego w
zadanym wierzchołku s.

Uwaga: DFS drzewo rozpinające, to drzewo ukorzenione i takie, że krawędzie
niedrzewowe łączą tylko potomków z przodkami w tym drzewie.

Zadanie 9.6
Grafy trójkątne to grafy spójne, w których każda dwuspójna składowa jest
trójkątem (cyklem długości 3).

a) Udowodnij, że każdy graf trójkątny jest 3-kolorowalny.

b) Zaproponuj efektywny algorytm 3-kolorowania grafów trójkątnych.

c) Zaproponuj efektywny algorytm obliczania rozmiaru najliczniejszego skoja-
rzenia w danym grafie trójkątnym.

Rozwiązanie: Punkt a) Znajdź dowolny “zewnętrzny” trójkąt v1, v2, v3. Poko-
loruj rekurencyjnie graf po usunięciu krawędzi (v1, v2), (v2, v3), (v3, v1) i izolowa-
nych wierzchołków. Takie pokolorowanie można łatwo uzupełnić o kolorowanie
v1, v2, v3 gdyż co najwyżej jeden z wierzchołków otrzymał kolor, więc pozostałe
możemy pokolorować pozostałymi dwoma wolnymi kolorami.

Punkt b) Policz drzewo DFS grafu G, zauważmy, że w grafie trójkątnym
wszystkie krawędzie powrotne (u, v) łączą wierzchołki o różnicy wysokości do-
kładnie 2 (h[u]− h[v] = 2). Więc jeśli nadamy wierzchołkom kolory c(v) = h[v]
mod 3 otrzymamy poprawne kolorowanie

Punkt c) Jak w dowodzie a) tylko dodajemy do skojarzenia krawędź z trójkąta,
która nie sąsiaduje z pozostałym grafem.

Zadanie 10.1
Dany jest (przez listy sąsiedztwa) graf G = (V,E) z wyróżnionym wierzchołkiem
s. Dodatkowo każdemu wierzchołkowi przypisano dodatnią liczbę całkowitą.
Zaprojektuj wydajny algorytm, który znajdzie w G najdłuższą ścieżkę o początku
w s, na której liczby przypisane wierzchołkom tworzą ściśle malejący ciąg.
Rozwiązanie: Niech f : V → N oznacza funkcję, która przypisuje dla każdego
wierzchołka liczbę całkowitą. Tworzymy graf G′ = (V,E′), gdzie

E′ = {(u, v) ∈ E : f(u) > f(v)}

5

Graf G′ to acykliczny graf skierowany (DAG) a w nim łatwo policzyć
najdłuższą ścieżkę:
Algorytm 1: Obliczanie najdłuższych ścieżek

Input: Acykliczny graf skierowany G′ = (V,E′)
Input: Tablica d zawierająca długość najdłuższej ścieżki

rozpoczynającej się w danym wierzchołku
Posortuj topologicznie wierzchołki V = (v1, . . . , vn)
foreach i = n, . . . , 1 do

d[vi] = max({0} ∪ {d[u] + 1 : (vi, u) ∈ E′})

Złożoność czasowa i pamięciowa O(|V |+ |E|).

Zadanie 10.2
Skierowany graf G = ({1, 2, ..., n}, E) nazywamy grafem przedziałowym, jeśli
dla każdego wierzchołka v zbiór (numerów) wierzchołków, do których prowadzą
krawędzie z v, jest przedziałem domkniętym [l[v], r[v]], dla pewnych 1 ≤ l[v] ≤
r[v] ≤ n. W grafie mogą być pętle. Jeśli żadna krawędź nie wychodzi z v wówczas
l[v] = r[v] = 0. Liczbę n i ciąg par l[v], r[v] nazywamy zwartą reprezentacją G, a
liczbę n rozmiarem tej reprezentacji.
Dana jest zwarta reprezentacja pewnego grafu G.

a) Zaprojektuj algorytm, który sprawdzi, czy graf G po usunięciu wszystkich
pętli jest drzewem z korzeniem o krawędziach zorientowanych od korzenia
do liści.

b) Zaprojektuj algorytm, który sprawdza, czy G jest słabo spójny (po usunię-
ciu orientacji na krawędziach graf jest spójny).

c) Zaprojektuj algorytm, który sprawdza, czy G jest eulerowski.

Rozwiązanie: Punkt a) Jeśli
∑n

i=1(r[i]+1−l[i]) > 2n to graf G nie jest drzewem
(za dużo krawędzi). Wpp możemy w czasie liniowym utworzyć standardowa
reprezentację grafu G (np. jako listy sąsiedztwa) i zweryfikować czy G jest
drzewem.
Punkt b) Tworzymy nowy niezorientowany graf G′, który będzie zawierał dwa
rodzaje krawędzi:

• (i, l[i]) dla i = 1, . . . , n i l[i] ̸= 0,

• (j, j + 1) jeśli istnieje i takie, że l[i] ≤ j < j + 1 ≤ r[i].

Krawędzie (j, j + 1) możemy wyznaczyć gdy policzymy sumaryczne pokrycie
prostej odcinkami [l[i], r[i]]. Graf G′ jest spójny wtw gdy G jest słabo spójny.
Graf G′ ma O(n) krawędzi, więc w czasie liniowym sprawdzimy czy jest spójny.
Punkt c) Sprawdź czy graf jest słabo spójny a następnie policz czy dla każdego
wierzchołka indeg[v] = outdeg[v]. Stopnie wyjściowe można policzyć z wzoru:

outdeg[i] = r[i] + 1− l[i]

Zauważmy, że nie musimy usuwać krawędzi typu (i, i).

6

Wartości indeg możemy policzyć korzystając z następującego algorytmu:
Algorytm 2: Obliczanie indeg

Input: n i tablice l[i]/r[i]
Output: tablica indeg
A[0, . . . , n+ 1] = 0
foreach i = 1, . . . , n do

A[l[i]]+ = 1
A[r[i] + 1]− = 1

Policz sumy prefiksowe: indeg[i] =
∑i

j=0 A[i]

Zadanie 10.3
Niech n będzie liczbą całkowitą większą od 2 i niech J będzie rodziną co najwyżej
n różnych, domkniętych przedziałów liczb całkowitych zawartych w przedziale
[1, n]. Grafem G(n, J) nazywamy graf ({1, 2, ..., n}, {i− j: istnieje przedział w
J , do którego wpadają obie liczby (oba wierzchołki) i oraz j}).

a) Ile jest różnych drzew BFS o korzeniu w wierzchołku 1 w grafie G(8, J)
dla J = {[1, 4], [3, 6], [5, 8]}?

b) Ile jest różnych drzew DFS o korzeniu w wierzchołku 1 w grafie G(6, J)
dla J = {[1, 4], [3, 6]}?

c) Zaprojektuj efektywny algorytm, który dla danej liczby całkowitej n > 2
oraz rodziny co najwyżej n różnych przedziałów J zawartych w prze-
dziale [1, n] obliczy wysokość BFS drzewa w grafie G(n, J), o korzeniu w
wierzchołku 1.

d) Zaprojektuj efektywny algorytm, który dla danej liczby całkowitej n > 2
oraz rodziny co najwyżej n różnych przedziałów J zawartych w przedziale
[1, n], obliczy liczbę dwuspójnych składowych w grafie G(n, J).

Uwaga: na potrzeby tego zadania dwa drzewa przeszukiwania różnią się wtedy,
gdy istnieje wierzchołek, który w obu drzewach ma różnych ojców.
Rozwiązanie: Punkt c) Zauważmy, że jeśli u ≤ v to depth[u] ≤ depth[v]. Stąd
jeśli obliczymy dla każdego wierzchołka left[v] = min{u : (u, v′) ∈ J oraz v′ > v}
to możemy policzyć głębokość każdego wierzchołka (w drzewie BFS) korzystając
z następującego wzoru:

depth[u] =

{
0 jeśli u = 1

depth[left[u]] + 1 wpp

Zadanie 10.4
Zaprojektuj wydajny algorytm, który sprawdzi, czy w danym silnie spójnym
grafie istnieje zamknięta (zorientowana) marszruta o nieparzystej długości. Jeżeli
odpowiedzią jest TAK, znajdź jedną z takich marszrut.

7

Rozwiązanie: Policz drzewo BFS z dowolnego wierzchołka s i dla każdego
wierzchołka wyznacz jego głębokość w drzewie BFS d[v]. Niech (u, v) to krawędź
taka, że d[u] ̸≡ d[v] (mod 2):

• jeśli taka krawędź istnieje to odpowiedzią jest TAK, ponieważ możemy
skonstruować następującą marszrutę:

– niech Pu (Pv) to ścieżka s → u (s → v) korzystająca z krawędzi
drzewa BFS,

– wyznacz (np. za pomocą DFS) dowolną ściężkę P = v → s,

– niech M1 = Pu + uv + P , M2 = Pv + P

– dokładnie jedna z marszrut M1/M2 ma nieparzystą długość

• jeśli krawędź nie istnieje to graf jest dwudzielny więc odpowiedzią jest NIE.

Zadanie 10.5
Dany jest n-kąt wypukły W , którego wierzchołki są ponumerowane 1, 2, . . . , n
w kolejności ich występowania na obwodzie, n > 2. Ponadto danych jest k
przekątnych w wielokącie W . Zaprojektuj wydajny algorytm, które sprawdza,
czy istnieje para przecinających się przekątnych we wnętrzu wielokąta.
Rozwiązanie:

v1

v2

v6

v3

v4

v5

Rysunek 6: Przykład wielokąta z przekątnymi (1, 3), (1, 4) i (3, 6)

Zadanie sprowadza się do sprawdzenia czy istnieją dwa (niedomknięte) prze-
działy I1 = (i, j) i I2 = (k, l), takie, że I1 ̸⊆ I2, I2 ̸⊆ I3, I1 ∩ I2 ̸= ∅.

Sprawdzenie czy istnieją takie przedziały możem wykonać przeglądając prze-
działy w odpowiednim porządku. Tworzymy kolejkę zdarzeń:

E = {(li,+, (li, ri)) : 1 ≤ i ≤ n} ∪ {(ri,−, (li, ri)) : 1 ≤ i ≤ n}

Kolejkę porządkujemy wg następującego porządku, (ti, si, (li, ri)) < (tj , sj , (lj , rj)),
wtw:

• ti < tj ,

• lub ti = tj i si = - i sj = +,

• lub ti = tj i si = sj = + i ri > rj ,

• lub ti = tj i si = sj = - i li > lj ,

8

Algorytm 3: Sprawdzenie czy istnieją dwa przecinające się przedziały
Utwórz kolejkę zdarzeń E i uporządkuj ją wg zdefiniowanego porządku
S = ∅ (pusty stos przedziałów)
foreach (ti, si, (li, ri)) ∈ E do

/* Niezmiennik: l ≤ ti ≤ r dla (l, r) ∈ S */
if si = + then

Niech (l, r) = Top(S)
if r < ri then

/* l < li < r i (li, ri) ̸⊆ Top(S) i (li, ri) ∩ Top(S) ̸= ∅ */
return TAK

else
Push(S, (li, ri))

else
/* si = − i Top(S) = (li, ri) */
Pop(S)

return NIE

9

