Algorytmy i Struktury Danych, 11. é¢wiczenia

2025-12-17

Zadanie 9.1

a) Niech G bedzie grafem n + 1 wierzchotkowym, n > 4, w ktorym jeden
wierzchotek jest polaczony ze wszystkimi innymi, a podgraf rozpiety na
pozostatych n wierzchotkach jest cyklem elementarnym. Ile jest réznych
drzew przeszukiwania w gltab w grafie G — dwa drzewa si¢ roznia, jesli
istnieje wierzchotek, ktory w obu drzewach ma r6znych rodzicow. Opisz
sposob obliczania tej liczby.

b) Niech G = (V, E) bedzie grafem dwuspojnym o co najmniej trzech wierz-
chotkach, a u jego wyréznionym wierzchotkiem. Dobrg orientacja grafu G
z wierzchotka u nazywamy graf skierowany otrzymany z G w nastepujacy
spos6b: uruchomiamy algorytm przeszukiwania w glab z wierzchotka u, a
nastepnie orientujemy krawedzie drzewa przeszukiwania od ojca do syna,
a krawedzie niedrzewowe od potomka do przodka. Dany jest graf zorien-
towany H z wyr6znionym wierzchotkiem u. Zaproponuj algorytm, ktory
stwierdzi, czy H jest dobra orientacja pewnego grafu G z wierzchotka u.

Rozwigzanie:
Punkt a)

Przyktadowy graf dla n = 5:

Wynik to: n(n — 1)% + 2n:

e Przypadek A: 2n dla drzew rozpoczynajacych sie w centrum grafu (korzen
jest ustalony na vy, mozemy na n sposobéw wybraé pierwszy wierzchotek z
cyklu v; na dwa sposoby mozemy wybraé kierunek w ktérym kontynuujemy
DFS)

Rysunek 1: Przypadek A — 2n réznych drzew

e Przypadek B: n - (n — 1)? dla drzew rozpoczynajacych sie na cyklu:
— Przypadek B1: 2n-3" " 2(n—1—j) = 2n-3' "%k = n-(n—2)-(n—3)

Jj=2

— i # ji(v,v;) € E: zaczynamy w v; idziemy do v; (idac w lewo lub
w prawo) idziemy do vy a nastepnie do vy,

U
Yiq | Vi YjqQ Vi
O O & O

Vg

Rysunek 2: Przypadek B1

— Przypadek B2: 2n - (n — 2)
— 1 # ji(v;,v;) € E (i uzywamy tej krawedzi): zaczynamy w v;
idziemy do v; (idac po 1 krawedzi) idziemy do vy a nastepnie do vy,

e V; o X%

Vi O 0 Uj Vi O Vi

Rysunek 3: Przypadek B2

— Przypadek B3: 2n
— i #ji(v,v;) € E (i NIE uzywamy tej krawedzi): zaczynamy w v;
idziemy do v; (idac po n-1 krawedziach) idziemy do vy i koniczymy

(Y e 1
| Uj G (%

Rysunek 4: Przypadek B3

— Przypadek B4: n(n — 1)
— ¢ = j: zaczynamy w v; idziemy do vy a nastepnie do v nastepnie
DFS odwiedza reszte cyklu.

Vk O Vi

Rysunek 5: Przypadek B4

Punkt b)

Wszystkie krawedzie powrotne musza prowadzi¢ do przodkéw w drzewie.

Zadanie 9.2

Dane jest drzewo z korzeniem T, ktore jest DFS-drzewem rozpinajacym pew-
nego n-wierzchotkowego grafu GG. Wierzchotki drzewa sg identyfikowane z ich
numerami DFS wyznaczajacych kolejnosé ich pierwszych odwiedzin. Dla kazdego
wierzchotka i réznego od korzenia, t[i] jest numerem rodzica ¢ w drzewie T.
Wartos¢ ¢[.] dla korzenia jest rowna 0. Zaproponuj efektywny algorytm, ktory

a) sprawdzi, czy graf G moze by¢ grafem dwuspdjnym wierzchotkowo, a jesli
odpowiedz jest pozytywna, to poda

b) minimalng liczbe krawedzi w grafie G,
¢) maksymalna liczbe krawedzi w grafie G.

Rozwigzanie: Punkt a) Jesli korzeri T' ma wiecej niz jednego syna to G nie
jest dwuspdjny.

Punkt b) kazdy li$¢ musi mieé¢ jakas krawedz powrotna, jesli potaczymy kazdy 1isé
z korzeniem to spelnimy wszystkie warunki dwuspéjnosci, odpowiedz: (n —1+ L)
gdzie L to liczba lisci.

Punkt c) oprocz krawedzi z punktu b mozemy dodaé¢ wszystkie, ktore nie naru-
szaja DFS, czyli wszystkie do przodkow w drzewie DFS.

Zadanie 9.3

Marszruta w grafie G nazywamy kazdy skoniczony ciag wierzchotkow grafu taki,
ze kazde dwa kolejne wierzchotki sg potaczone krawedzia w tym grafie. Marszruta
jest zamknieta, gdy rozpoczyna sie i koiiczy w tym samym wierzchotku.

Powiemy, ze graf G jest eulerowski, jesli istnieje w nim marszruta zamknieta,
w ktorej kazda krawedz z grafu pojawia sie dokladnie raz. Marszrute o takiej
wtasnosci nazywamy cyklem Eulera.

Zaproponuj algorytm, ktéry w czasie liniowym sprawdza, czy dany graf
nieskierowany jest eulerowski i jesli tak, to znajduje w nim cykl Eulera.
Rozwiazanie:

Cykl Eulera w grafie skierowanym G istnieje wtedy i tylko wtedy gdy:

e dla kazdego wierzchotka v € V(G) mamy indeg(v) = outdeg(v).

e nieskierowana wersja grafu G (tzn. taka w ktorej ignorujemy zwrot krawe-
dzi), jest spoOjna,

Algorytm:
e C=10

e tak dlugo jak G nie jest pusty, oblicz dowolny cykl i dotacz go do C,

Zadanie 9.4

Dane jest n-wierzchotkowe drzewo z korzeniem 7T z wagami na krawedziach
(liczby catkowite). Dla kazdego wierzcholka v réznego od korzenia dane sg rodzic
plv] w drzewie 1 waga wlv] krawedzi v — p[v]. Przayjmujemy tez, ze wierzchotki sa
ponumerowane w porzadku “preorder” i utozsamiamy je z tymi numerami - v
oznacza zaré6wno wierzchotek, jak i jego numer.

Zaproponuj algorytm, ktory w czasie O(n-+k) udzieli odpowiedzi na k zapytan
postaci:

W (u;v):: ile wynosi waga Sciezki (suma wag krawedzi na Sciezce) z u do v, gdy
wiadomo, ze u jest przodkiem v?

Rozwigzanie:
e policz s[u] — suma waga na krawedziach na $ciezce od u do korzenia,

o W(u,v) = s[v] — su

Zadanie 9.5

Kaktusem nazywamy graf, w ktorym kazda dwuspojna sktadowa jest krawedziag
lub cyklem.

a) Zaprojektuj wydajny czasowo algorytm, ktory dla danego kaktusa G i
wskazanych wierzchotkéw u i v obliczy liczbe réznych Sciezek elementarnych
z u do v.

b) Zalozmy, ze krawedziom kaktusa przypisano catkowitoliczbowe wagi. Zapro-
jektuj wydajny czasowo algorytm, ktéry w wazonym kaktusie G = (V| E)
znajduje minimalng wage DFS drzewa rozpinajacego zakorzenionego w
zadanym wierzchotku s.

Uwaga: DFS drzewo rozpinajace, to drzewo ukorzenione i takie, ze krawedzie
niedrzewowe lacza tylko potomkéw z przodkami w tym drzewie.

Zadanie 9.6

Grafy trojkatne to grafy spojne, w ktorych kazda dwuspojna skladowa jest
trojkatem (cyklem dlugosci 3).

a) Udowodnij, ze kazdy graf trojkatny jest 3-kolorowalny.
b) Zaproponuj efektywny algorytm 3-kolorowania grafow trojkatnych.

c¢) Zaproponuj efektywny algorytm obliczania rozmiaru najliczniejszego skoja-
rzenia w danym grafie trojkatnym.

Rozwiazanie: Punkt a) Znajdz dowolny “zewnetrzny” trojkat vy, ve, vs. Poko-
loruj rekurencyjnie graf po usunieciu krawedzi (v, v2), (v2,v3), (v3,v1) 1 izolowa-
nych wierzchotkow. Takie pokolorowanie mozna tatwo uzupetnié o kolorowanie
v1, U2, v3 gdyz co najwyzej jeden z wierzchotkoéw otrzymat kolor, wiec pozostate
mozemy pokolorowaé¢ pozostalymi dwoma wolnymi kolorami.

Punkt b) Policz drzewo DFS grafu G, zauwazmy, ze w grafie trojkatnym
wszystkie krawedzie powrotne (u, v) tacza wierzcholki o roznicy wysokosci do-
ktadnie 2 (h[u] — h[v] = 2). Wiec jesli nadamy wierzchotkom kolory c(v) = h[v]
mod 3 otrzymamy poprawne kolorowanie

Punkt ¢) Jak w dowodzie a) tylko dodajemy do skojarzenia krawedz z trojkata,
ktoéra nie sasiaduje z pozostatym grafem.

Zadanie 10.1

Dany jest (przez listy sasiedztwa) graf G = (V, E) z wyr6znionym wierzcholkiem
s. Dodatkowo kazdemu wierzchotkowi przypisano dodatnia liczbe calkowita.
Zaprojektuj wydajny algorytm, ktoéry znajdzie w G najdtuzsza $ciezke o poczatku
w s, na ktorej liczby przypisane wierzchotkom tworza $cisle malejacy ciag.
Rozwiazanie: Niech f:V — N oznacza funkcje, ktéra przypisuje dla kazdego
wierzcholka liczbe catkowita. Tworzymy graf G' = (V, E’), gdzie

E'={(u,v) € E: f(u) > f(v)}

Graf G’ to acykliczny graf skierowany (DAG) a w nim latwo policzyé
najdtuzsza $ciezke:

Algorytm 1: Obliczanie najdtuzszych $ciezek

Input: Acykliczny graf skierowany G' = (V, E')
Input: Tablica d zawierajaca dlugo$é najdtuzszej Sciezki
rozpoczynajacej sie w danym wierzchotku
Posortuj topologicznie wierzchotki V' = (vy,...,v,)
foreach i =n,...,1 do
L d[v;] = max({0} U {d[u] +1: (vi;,u) € E'})

Ztozonosé czasowa i pamieciowa O(|V| + |E|).

Zadanie 10.2

Skierowany graf G = ({1,2,...,n}, F) nazywamy grafem przedzialowym, jesli
dla kazdego wierzcholka v zbior (numerow) wierzchotkow, do ktorych prowadza
krawedzie z v, jest przedziatem domknietym [I[v], [v]], dla pewnych 1 < {[v] <
r[v] < n. W grafie moga by¢ petle. Jesli zadna krawedz nie wychodzi z v wowczas
[[v] = r[v] = 0. Liczbe n i ciag par l[v], r[v] nazywamy zwarta reprezentacja G, a
liczbe n rozmiarem tej reprezentacji.

Dana jest zwarta reprezentacja pewnego grafu G.

a) Zaprojektuj algorytm, ktory sprawdzi, czy graf G po usunieciu wszystkich
petli jest drzewem z korzeniem o krawedziach zorientowanych od korzenia
do lisci.

b) Zaprojektuj algorytm, ktory sprawdza, czy G jest stabo spojny (po usunie-
ciu orientacji na krawedziach graf jest spojny).

¢) Zaprojektuj algorytm, ktory sprawdza, czy G jest eulerowski.

Rozwigzanie: Punkt a) Jesli Y7 | (r[i]+1—1[i]) > 2n to graf G nie jest drzewem
(za duzo krawedzi). Wpp mozemy w czasie liniowym utworzyé standardowa
reprezentacje grafu G (np. jako listy sasiedztwa) i zweryfikowaé¢ czy G jest
drzewem.

Punkt b) Tworzymy nowy niezorientowany graf G’, ktory bedzie zawieral dwa
rodzaje krawedzi:

o (4,l[i])dlai=1,...,nil[{] #0,
e (j,j+ 1) jesli istnieje ¢ takie, ze I[i] < j < j+1<rli].

Krawedzie (j,j + 1) mozemy wyznaczy¢ gdy policzymy sumaryczne pokrycie
prostej odcinkami [I[¢], r[i]]. Graf G’ jest spojny wtw gdy G jest stabo spojny.
Graf G’ ma O(n) krawedzi, wiec w czasie liniowym sprawdzimy czy jest spojny.
Punkt ¢) Sprawdz czy graf jest stabo spéjuy a nastepnie policz czy dla kazdego
wierzchotka indeg[v] = outdeg[v]. Stopnie wyj$ciowe mozna policzy¢ z wzoru:

outdegli] = r[i] + 1 — I[i]

Zauwazmy, ze nie musimy usuwa¢ krawedzi typu (i,14).

Wartosci indeg mozemy policzyé korzystajac z nastepujacego algorytmu:

Algorytm 2: Obliczanie indeg
Input: n i tablice I[é]/r[i]
Output: tablica indeg
Al0,...,n+1]=0

foreachi=1,...,n do
Allli+=1
Alrli]+1]—-=1

Policz sumy prefiksowe: indegl[i] = Zj’:o Ali]

Zadanie 10.3

Niech n bedzie liczba catkowita wieksza od 2 i niech J bedzie rodzina co najwyzej
n réznych, domknietych przedziatéow liczb catkowitych zawartych w przedziale
[1,n]. Grafem G(n,J) nazywamy graf ({1,2,...,n}, {i — j: istnieje przedzial w
J, do ktorego wpadaja obie liczby (oba wierzcholki) ¢ oraz j}).

a) Ile jest roznych drzew BFS o korzeniu w wierzchotku 1 w grafie G(8, J)
dla J = {[1,4],[3,6],[5,8]}7

b) Ile jest roznych drzew DFS o korzeniu w wierzchotku 1 w grafie G(6, J)
dla J ={[1,4],[3,6]}7

c) Zaprojektuj efektywny algorytm, ktory dla danej liczby catkowitej n > 2
oraz rodziny co najwyzej n roéznych przedziatéw J zawartych w prze-
dziale [1,n] obliczy wysoko§¢ BFS drzewa w grafie G(n, J), o korzeniu w
wierzchotku 1.

d) Zaprojektuj efektywny algorytm, ktory dla danej liczby catkowitej n > 2
oraz rodziny co najwyzej n roéznych przedzialéow J zawartych w przedziale
[1,n], obliczy liczbe dwuspdjnych sktadowych w grafie G(n, J).

Uwaga: na potrzeby tego zadania dwa drzewa przeszukiwania réznia sie wtedy,
gdy istnieje wierzchotek, ktéry w obu drzewach ma réznych ojcow.
Rozwiazanie: Punkt ¢) Zauwazmy, ze jesli u < v to depthlu] < depth[v]. Stad
jesli obliczymy dla kazdego wierzcholka left[v] = min{w : (u,v") € J oraz v' > v}
to mozemy policzyé gtebokosé kazdego wierzchotka (w drzewie BFS) korzystajac
z nastepujacego wzoru:

depth[u] jesliu=1
u| =
P depthlleft[u]] +1 wpp

Zadanie 10.4

Zaprojektuj wydajny algorytm, ktory sprawdzi, czy w danym silnie sp6jnym
grafie istnieje zamknieta (zorientowana) marszruta o nieparzystej dtugosci. Jezeli
odpowiedzia jest TAK, znajdz jedng z takich marszrut.

Rozwigzanie: Policz drzewo BFS z dowolnego wierzchotka s i dla kazdego
wierzchotka wyznacz jego glebokosé w drzewie BFS d[v]. Niech (u,v) to krawedz
taka, ze d[u] # d[v] (mod 2):

e jesli taka krawedz istnieje to odpowiedzia jest TAK, poniewaz mozemy
skonstruowaé nastepujaca marszrute:

— niech P, (P,) to Sciezka s — u (s — v) korzystajaca z krawedzi
drzewa BFS,

wyznacz (np. za pomocg DFS) dowolna sciezke P = v — s,

niech M; = P, +uwv+ P, My = P, + P

— dokladnie jedna z marszrut M; /M, ma nieparzysta dlugosc

e jesli krawedz nie istnieje to graf jest dwudzielny wiec odpowiedzig jest NIE.

Zadanie 10.5

Dany jest n-kat wypukly W, ktorego wierzchotki sg ponumerowane 1,2,...,n
w kolejnosci ich wystepowania na obwodzie, n > 2. Ponadto danych jest k
przekatnych w wielokacie W. Zaprojektuj wydajny algorytm, ktére sprawdza,
czy istnieje para przecinajacych sie przekatnych we wnetrzu wielokata.

Rozwigzanie:

U3 V2

V4 U1

Vs Ve
Rysunek 6: Przyklad wielokata z przekatnymi (1,3), (1,4) i (3,6)

Zadanie sprowadza sie do sprawdzenia czy istnieja dwa (niedomkniete) prze-
dzialy Il = (’L,]) i IQ = (k?,l), takie, ze 11 g .[2, IQ g Ig, Il 012 75 [Z)

Sprawdzenie czy istnieja takie przedzialy mozem wykonaé przegladajac prze-
dzialy w odpowiednim porzadku. Tworzymy kolejke zdarzen:

E:{(ll,-l-,(l“’l"z)) 01 §i§n}u{(ri,—7(li,n-)) 01 Slén}

Kolejke porzadkujemy wg nastepujacego porzadku, (¢, i, (I, 7:)) < (¢4, 55, (1;,75)),
wtw:

.ti<t]’7
olubti:tjisi:—isj:Jr,
elubt, =t;is;=s;=+1ir;>ry,

01ubti:tjisi:sj=-ili>lj7

Algorytm 3: Sprawdzenie czy istnieja dwa przecinajace sie przedzialty

Utworz kolejke zdarzen E i uporzadkuj ja wg zdefiniowanego porzadku
S = 0 (pusty stos przedzialow)
foreach (t;, s;, (l;,r;)) € E do
/* Niezmiennik: [<t; <r dla (I,7) € S x/
if s;, = + then
Niech (I,7) = Top(S)
if r < r; then
/¥ L<ly<r i (li,ri) € Top(S) i (li,ri) NTop(S)#D */
return TAK
else

| Push(S, (l;,r;))

else
/¥ si=— 1 Top(S) = (li,1;) */
| Pop(S)

r;,turn NIE

