
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Marcin Waniek

Hiding in Social Networks
PhD dissertation

Supervisor
dr hab. Piotr Faliszewski

Department of Computer Science
AGH University of Science and Technology

Auxiliary Supervisor
dr Tomasz Michalak

Institute of Informatics
University of Warsaw

March 2017

Author’s declaration:
I hereby declare that this dissertation is my own work.

March 15, 2017 .
Marcin Waniek

Supervisor’s declaration:
The dissertation is ready to be reviewed.

March 15, 2017 .
dr hab. Piotr Faliszewski

Auxiliary Supervisor’s declaration:
The dissertation is ready to be reviewed.

March 15, 2017 .
dr Tomasz Michalak

Abstract

The Internet and social media have fuelled enormous interest in social network analysis.
New tools continue to be developed and used to analyse our personal connections. This
raises privacy concerns that are likely to exacerbate in the future. With this in mind, we
ask the question: Can individuals or groups actively manage their connections to evade
social network analysis tools? By addressing this question, the general public may better
protect their privacy, oppressed activist groups may better conceal their existence, and
security agencies may better understand how terrorists escape detection.

In this dissertation we consider hiding from three different types of social network
analysis tools. First, we study how both an individual and a group of nodes can evade
analysis utilizing centrality measures, without compromising ability to participate in net-
work’s activities. In the second study, we investigate how a community can avoid being
identified by a community detection algorithm as a closely cooperating group of nodes.
In the third study, we analyse how a presence of a particular edge in a network can be
hidden from link prediction algorithms.

For considered problems we analyse their computational complexity and prove that
they are usually NP-hard. However, we also provide polynomial-time heuristic solutions
that turn out to be effective in practice. We test our algorithms on a number of real-life
and artificially generated network datasets.

Keywords: Social networks; Hiding in networks; Centrality measures; Influence mod-
els; Community detection; Link prediction; Computational complexity; Heuristic solu-
tions.

ACM classification: Security and privacy → Social network security and
privacy. Theory of computation → Social networks. Theory of computation →
Problems, reductions and completeness.

Streszczenie

Internet oraz media społecznościowe spowodowały ogromny wzrost zainteresowania meto-
dami analizy sieci społecznych. Coraz bardziej zaawansowane narzędzia służą do analizy
naszych powiązań z innymi ludźmi. Rodzi to poważne obawy związane z prywatnością.
Mając to na uwadze, rozważamy następujące pytanie: Czy członek lub grupa członków
sieci społecznej może aktywnie zarządzać swoimi połączeniami tak, aby uniknąć wykrycia
przez narzędzia analizy sieci społecznych? Odpowiedź na to pytanie pozwoliłaby użyt-
kownikom Internetu lepiej chronić swoją prywatność, grupom aktywistów lepiej ukrywać
swoją działalność, a agencjom bezpieczeństwa lepiej rozumieć w jaki sposób organizacje
terrorystyczne i kryminalne mogą unikać wykrycia.

W tej pracy rozważamy ukrywanie się przed trzema różnymi narzędziami analizy sieci
społecznych. Po pierwsze, badamy jak pojedynczy węzeł lub ich grupa może uniknąć wy-
krycia przez miary centralności (ang. centrality measures), wciąż pozostając zdolnym do
brania udziału w działalności sieci. Po drugie, analizujemy jak grupa węzłów może uniknąć
zidentyfikowania przez algorytmy wykrywania społeczności (ang. community detection al-
gorithms). Po trzecie wreszcie, badamy jak można ukryć istnienie określonej krawędzi w
sieci przed algorytmami przewidywania połączeń (ang. link prediction algorithms).

Analizujemy złożoność obliczeniową rozważanych zagadnień oraz udowadniamy, że
większość z nich to problemy NP-trudne. Tym niemniej prezentujemy również wielomia-
nowe rozwiązania heurystyczne, które okazują się efektywne w praktyce. Nasze algorytmy
testujemy na szeregu różnych sieci, tak prawdziwych, jak i wygenerowanych losowo.

Słowa kluczowe: Sieci społeczne; Ukrywanie się w sieciach; Miary centralności;
Modele wpływu; Wykrywanie społeczności; Przewidywanie połączeń; Złożoność oblicze-
niowa; Rozwiązania heurystyczne.

Klasyfikacja ACM: Bezpieczeństwo i prywatność → Bezpieczeństwo i pry-
watność w sieciach społecznych. Teoria obliczeń → Sieci społeczne. Teoria ob-
liczeń → Preoblemy, redukcje i zupełność.

Acknowledgments

I would like to express my deepest gratitude to Tomasz Michalak, my mentor and
supervisor, who taught me almost all I know about research (with the rest coming from
other people mentioned on this page). I would not be where I am today without him.

I am thankful to Piotr Faliszewski, who helped me put together this dissertation and
greatly improved the quality of my writing.

I am grateful to Talal Rahwan, discussions with whom influenced many parts of this
dissertation and whose hospitality made far away country feel like home.

I would also like to thank all my other co-authors in this and other lines of research:
Michael Wooldridge, Long Tran-Thanh, Agata Nieścieruk, Nicholas Jennings, Marcin
Bielecki, Joanna Tyrowicz and Krzysztof Makarski. I have learned a lot from all of them.

Finally, I would like to give thanks to my family and my friends, especially to my
mom, my dad, and my brother Paweł. Finishing this dissertation would not be possible
without their constant love and support.

My work was supported by the Polish National Science Centre grant Hiding in Social
Networks, no. 2015/17/N/ST6/03686.

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Organization and Results . 6
1.3 Related Work . 7

1.3.1 Link Recommendation . 7
1.3.2 Sensitivity Analysis . 8
1.3.3 Dark Networks Analysis . 9

1.4 Publications . 11

2 Preliminaries 13
2.1 Basic Network Notation . 13
2.2 Datasets . 14
2.3 Computational Complexity . 16

2.3.1 The Turing Machine . 16
2.3.2 Complexity Classes and Reduction Process 17
2.3.3 NP-Complete Problems . 18

3 Disguising Centrality of a Node 19
3.1 Introduction . 19
3.2 Preliminaries . 20

3.2.1 Centrality Measures . 21
3.2.2 Models of Influence . 21

3.3 Problem Definitions . 23
3.4 Complexity Analysis . 24
3.5 Heuristic Solution . 33

3.5.1 The ROAM heuristic . 33
3.5.2 Configuring the ROAM Heuristic 35
3.5.3 Experimental Results . 35

3.6 Concluding Remarks . 38

4 Hiding Leaders 41
4.1 Introduction . 41
4.2 Problem Definition . 43
4.3 Complexity Analysis . 44
4.4 Constructing a Network . 54
4.5 Concluding Remarks . 58

2

5 Hiding Communities 61
5.1 Introduction . 61
5.2 Preliminaries . 62
5.3 Minimizing Modularity . 63
5.4 Measure of Concealment . 67
5.5 Heuristic Solution . 68

5.5.1 The DICE Heuristic . 68
5.5.2 Experimental Results . 69

5.6 Concluding Remarks . 71

6 Evading Link Prediction 74
6.1 Introduction . 74
6.2 Preliminaries . 75
6.3 Problem Definition . 77
6.4 Complexity Analysis . 78
6.5 Heuristic Solution . 83

6.5.1 The Effects of Adding or Removing an Edge 84
6.5.2 The OTC Heuristic . 85
6.5.3 The CTR Heuristic . 86
6.5.4 Experimental Design . 87
6.5.5 Simulation Results . 88

6.6 Concluding Remarks . 91

7 Conclusions 93

Bibliography 97

A ROAM Simulation Results 109

B DICE Simulation Results 121

C Remainder of the Proof of Lemma 1 126

D An Efficient Implementation of the OTC algorithm 132

E Priority Queue Implementation of the CTR algorithm 134

F OTC and CTR Simulation Results 135

3

Chapter 1

Introduction

In this chapter we introduce the issue of hiding in social networks and we outline the
organization of this dissertation. Next, we present the body of related literature. Finally,
we list our publications that contain elements of this dissertation.

1.1 Motivation

Recent years have lead to an increased interest in the analysis of social networks [131].
Applications of this wide body of research vary from organizing massive viral-marketing
campaigns [31], through the analysis of outbreaks of infectious diseases [56], all the way
up to fighting global criminal and terrorist organizations [98, 141].

Such a variety of problems gave rise to various social network analysis tools and
techniques. Examples of prominent types of tools include centrality measures, community
detection algorithms, and link prediction algorithms. Centrality measures [12] are tools
to identify key nodes in the network, being it the leader of a terrorist cell [80], the
financial institution responsible for the financial crisis [82] or the most important airport
in the world-wide air transportation structure [60]. Community detection algorithms [51]
can extract communities of closely cooperating individuals from the network data, e.g.,
associates of a known criminal [49], climate indices related to seasonal rainfall [14] or
protein complexes in the interaction diagram [112]. Link prediction algorithms [57] can
asses probabilities of existence of hidden or not-yet-formed edges, either to detect missing
connections between mafia members [15], to discover the interactions between proteins
in biological networks [26], or to recommend to customer a product that she might be
interested in buying [37, 88].

Clearly, many situations, where social network analysis tools are being applied can be
described as adversarial settings. In other words, members of the networks that are being
analysed may be interested in falsifying the results of such analysis, e.g., by modifying the
structure of their social connections. At the same time, however, nearly all widely used
social network analysis tools treat the objects of their analysis as completely oblivious
entities.

In this dissertation we assume the role of a strategic member (or a group of members)
of a social network and investigate whether and how they can evade various social network
analysis tools. As tools that we consider take into account only the topology of the
network, we assume that possible strategies of members that seek to hide themselves

4

consist of adding and removing edges from the network. We investigate the problem both
from the computational complexity point of view, i.e., we ask how hard it is to find an
optimal way of hiding, and from a more practical perspective, i.e., we study the settings
where, on one hand, either the knowledge or the set of possible strategies of hiding nodes
become limited by the external factors and, on the other hand, imperfect, heuristic, easy
to implement solutions suffice.

On a broader note, the questions that this dissertation addresses can be generalized
as follows:

1. Given a seeker who is running a social network analysis tool t∗ and some evader(s)
whose goal is to evade t∗ under certain conditions and constraints, which set of
actions should the evader(s) take to achieve that goal?

2. How hard would it be to compute such an optimal set?

3. And how effective would this set be against t∗?

The motivation of our work is twofold. The first aspect is privacy protection. Social
connections of millions of users of such social media sites as Facebook, Twitter or Google
Plus can easily be used to uncover information that most of their users would prefer to
remain private [40]. The way we use the Web is under constant surveillance by Internet
service providers, governments, and private companies. The situation is even more dire
in authoritarian regimes, where Internet content is the object of direct censorship and
people spreading opinions that are not consistent with government’s ideology are subject
to serious repressions, including incarceration. King et al. performed a study of Internet
censorship in China [76, 77]. It indicated that the main goal of the Chinese Internet
police is not as much preventing the publication of undesirable content, as it is blocking
any form of society self-organization. Under such and similar circumstances, any simple
hiding techniques that can be utilised without knowledge about the structure of an entire
network and without the need to perform extensive computation may be valuable to
anti-government activists and ordinary Internet users alike.

The second aspect of hiding in networks is the potential use of presented (or similar)
techniques by malevolent groups, such as terrorist and criminal organisations. The need
of secrecy is one of the driving forces of their day-to-day activities. It seems to be a well-
motivated assumption that over the course of years and decades of operating outside the
law they developed various ways of concealing their actions. Since social network analysis
tools are a part of analytic software used by police forces and intelligence agencies for
many years now [64], members of the dark networks might have already sought means of
remaining undetected by them. Investigating such venues of possible avoidance detection
may help law enforcement agencies in identifying true ringleaders of malevolent groups.

Unfortunately, at the moment we lack sufficient understanding of evasion techniques
that can falsify the results of social network analysis tools. What is more, currently
existing tools do not even have the ability to internalize such evasion techniques. The
reason of this is most social network analysis tools are built around the assumption
that members of the network do not act strategically to evade these tools. Even the
more advanced tools dedicated to analysing covert networks [117] typically assume that
the investigated network is not subject to strategic manipulation. Given this, we want to

5

direct attention towards the strategic evasion of social network analysis tools, as discussed
by Michalak et al. [102].

Our work can be considered as a first step in the strategic analysis of hiding in social
networks. To the best of our knowledge, we are the first to propose this kind of adversary
setting in the social network analysis, where the strategic behaviour of network actors is
explicitly considered.

1.2 Organization and Results

The remainder of the dissertation is organized as follows:

• In Chapter 2, we describe basic notation and network datasets that are used
throughout the whole dissertation. We also provide a short summary of computa-
tional complexity concepts required for the theoretical part of this dissertation, in-
cluding the notion of a Turing machine, P and NP complexity classes, NP-hardness
and NP-completeness. We also define the NP-complete problems used in our reduc-
tions.

• In Chapter 3, we analyse the problem of hiding a single node in a network, by
reducing its centrality value without hurting its influence over the network. Most
defined problems turn out to be NP-hard, i.e., finding the optimal solutions is an
extremely demanding task. Given this difficulty, we design a heuristic solution that
is scalable and easy to implement even for a lay person. Surprisingly, it proves to
be efficient in practice and allows the network members who wish to maintain their
privacy to do so.

• In Chapter 4, we extend the setting to hiding a group of nodes (network leaders)
by ensuring their low positions in centrality rankings. Contrary to simple intuition,
the problem proves to be intractable even for degree centrality—perhaps computa-
tionally simplest centrality measure. Next, we consider how, instead of modifying
already existing network, one could construct a network from scratch so that the
leaders would occupy low positions in the rankings. Our analysis aims to shed some
light on how leaders of criminal and terrorist organizations design their networks
to increase secrecy and safety of the leadership element.

• In Chapter 5, we approach the problem of group hiding from a different perspective.
We investigate, how a group of nodes can avoid identification as a separate entity by
community detection algorithms. We describe an optimal way of adding or removing
a single edge from the network to lower the modularity of a given community
structure. We also design and test a simple heuristic that allows a group of nodes
to conceal themselves as a community, irrespectively of which community detection
algorithm is used against them.

• In Chapter 6, we analyse the ways of hiding an edge in a network, by preventing
its identification by a link prediction algorithm. We show that even for the sim-
plest class of these algorithms, i.e., local similarity indices, the problem of hiding

6

edges is NP-complete. To address this hardness results in a practical way, we pro-
pose two polynomial time heuristic solutions—one focused on adding edges to the
network and one focused on removing them—that allow to conceal a chosen set of
connections by hindering their detection by link prediction algorithms.

• Finally, in Chapter 7, we summarize our main findings. We also describe the limi-
tations of our approach and suggest potential directions for future work.

1.3 Related Work

In this section we present existing body of literature that can be related to this disser-
tation. First, we describe works concerning the problem of link recommendation, i.e.,
adding to the network edges that maximize specific properties. Second, we outline the
sensitivity analysis literature that investigates the robustness of centrality measures to
random network changes. Third, we describe works concerning the analysis of the dark
networks, i.e., criminal and terrorist organisations. We present classical studies focused
on identifying specific characteristics of the dark networks, works that model the activi-
ties of the networks using multi-agent systems, as well as literature that uses game theory
to analyse covert organizations.

1.3.1 Link Recommendation

Our work, although motivated in a very different fashion, can be seen as an extension of
the literature on link recommendation. Link recommendation systems intend to modify
some characteristics of the network by adding edges to it [89, 155, 87]. Typical applications
of such systems are recommending items to buy based on the history of purchases [130] or
recommending future collaborations based on citation networks [120]. Some of the works
in this body of literature focus directly on centrality measures.

Our analysis differs from this body of literature in a number of ways. While existing
works typically focus solely on increasing a certain statistic, we take into consideration
additional features that we want to maintain (e.g., influence in the network in Chapter 3
or particular connections that are forbidden to modify in all chapters). While most works
consider only a single network analysis tool, we analyse a range of most popular tools
(three different centrality measures, seven different community detection algorithms and
nine different link prediction algorithms). Finally, while authors typically assume a com-
plete information setting, we design algorithms that can be used by network members
without the knowledge about the structure of the entire network.

Parotsidis et al. [115] investigate the way of choosing edges to add to the network
in order to maximize expected closeness centrality. The edges are chosen from the set of
results of another link recommendation system, where each edge is given the probability
of adoption, hence the optimization of expected centrality. Motivation of the authors is
maximizing the spread of information in the network, i.e., they treat closeness centrality
in a similar way to influence measure. Authors find the problem to be NP-hard and they
propose a greedy approximation algorithm.

A similar problem is considered by Crescenzi et al. [36]. They investigate how a node
can improve its standing in the network, again, according to closeness centrality measure,

7

but adding some edges that are incident to it, i.e., by connecting to some new neighbours.
Authors prove that the problem is hard to approximate, but they provide a greedy opti-
mization algorithm, which is then evaluated on a number of different networks. The work
shows that a node can improve its centrality ranking by adding only a small number of
edges to the network.

Other network characteristics that are either minimized or maximized by various
algorithms include eigenvalue of the network’s adjacency matrix [142, 127], the diameter of
the network [16, 53], average length of shortest-path between any two nodes [99, 113, 114],
the number of closed triads [41], and eccentricity [118].

1.3.2 Sensitivity Analysis

Viewed from a different perspective, our work can be seen as an extension of the sensitivity
analysis of centrality measures [35] and community detection algorithms [110].

However, while such analyses typically consider random network alterations, we focus
on the effects of strategic changes. Rather than representing incidental information dis-
tortion in data, edge modifications in our case are result of a coordinated effort to falsify
the results of the analysis.

Borgatti et al. [21] investigate the robustness of centrality measures under different
kinds of random network errors, i.e., removal and addition of either nodes or edges.
Authors analyse how accuracy of the centrality measures depends on error rate. As it
turns out, accuracy declines smoothly with increasing error. Interestingly, there is no
notable difference in robustness between all considered centrality measures, i.e., degree,
closeness, betweenness, and eigenvector centralities. Another surprising result is that
small kinds of network changes result in a very similar decrease in centrality accuracy.

Frantz et al. [52] study the impact of network’s topology on the robustness of centrality
measures in case of random errors. Authors find out that the type of topology has a
significant effect on the robustness of centrality measure, far greater than either density
of the network or its size. Scale-free and core-peripheral networks turn out to be more
robust in terms of accuracy of the centrality measures than small-world and cellular
networks.

Karrer et al. [71] claim that robustness of a community structure to small perturba-
tions should be a measure of its significance, rather than more widely used modularity.
Authors randomly change edges of the network and use the variation of information
as a measure of distance between the original network and its modified variant. Using
this approach they compare how changing the structure of the network affects results
of community detection algorithms. This method enables one to discern between strong
community structures and those that are artefacts of the algorithm’s nature.

Yang and Leskovec [154] consider a similar setting, but in their analysis they use
only real-life networks where the ground truth is known. This way they can evaluate how
reliable are certain community detection algorithms in the presence of noise. As it turns
out, robustness of an algorithm is highly dependant on the community structure scoring
function it uses.

8

1.3.3 Dark Networks Analysis

We now describe the body of literature related to the analysis of terrorist and criminal
networks. We divide it according to methods used in the analysis.

While this body of literature study the same structures as we do, i.e., networks mem-
bers of which may hope to remain undetected, it treats them in a very different way.
Authors of this type of works usually assume that the object of their analysis is static
and that it correctly represents underlying reality. On the other hand, we treat members
of the network as strategic players, who may change the structure of their organization
in order to achieve their goals.

Social Network Analysis Tools

The application of social network analysis techniques, such as centrality measures and
community detection algorithms, to criminal organizations is a well-established research
theme [137].

Carley [27] points out limitations of traditional social network analysis tools and
emphasizes the importance of taking into account the changing structure of the network,
the ability of networks to heal themselves, and the ability to act without full information.
The author applies this approach to building a model of evolution and destabilization of
social networks.

Ressler [124] investigates the ways in which social network analysis can be helpful in
understanding modus operandi of terrorist organizations. The author notices increased
interest in applying the social network analysis tools to terrorist networks after the attacks
of 9/11.

Xu and Chen [153] analyse statistically a number of covert networks, including ter-
rorist groups, organizations of drug traffickers, criminals involved in gang-related crimes
and hyperlinks between terrorist websites. They gather characteristics such as average
path length, clustering coefficient, degree distribution and link density. The results show
striking similarities between dark networks and small-world structures.

Paulo et al. [116] presents Organization, Relationship, and Contact Analyser (ORCA),
software for the analysis of organizations of gang-related criminals. Authors develop an
algorithm that identifies the most influential members of the group using the contagion
tipping model. The system can also decompose street gangs into components by maxi-
mizing modularity and determine the degree to which each individual is a member of a
gang.

Multi-agent Systems

Carley et al. [29] consider the use of different tools and approaches to destabilizing net-
works: social network measures, pattern location and multi-agent simulations. Authors
addresses the problem of complexity of analysing networks with hundreds of agents. They
consider connections between agents not only as a social network, but as a meta-matrix of
networks—incorporating knowledge possessed by individuals, goals that they can accom-
plish and information they have about others. Authors investigate the effects of removal
of the network’s leader on the redistribution of tasks and changes in agents’ hierarchy.

9

Tsvetovat and Carley [144] present NetWatch—a multi-agent model of covert network
surveillance and destabilization. It consists of two networks, representing a terrorist orga-
nization and a law enforcement agency. Every task carried out by a terrorist requires some
level of knowledge. Terrorists use connections of the network to exchange information,
improving their performance. At the same time, law enforcement agents intend to gain
the same knowledge by intercepting messages between terrorists. At later stages, they
use collected information to destabilize the network by isolating certain nodes. Authors
analyse effects of different wiretap strategies on the learning process of law enforcement
network and of different destabilization strategies on terrorist network’s performance.
Results show that wiretapping most central individuals is more effective than attempts
to analyse all communication or listening to only a certain number of channels. Sur-
prisingly, isolating gatekeeper agents is not the most efficient strategy of destabilizing
network, as it exhibits an emergent healing behaviour. At the same time, removal of the
most knowledgeable individuals results in permanent damage.

Tsvetovat and Carley [143] also address a problem of obtaining viable datasets of
covert networks. There exists a limited number of open-source databases providing em-
pirical data. Authors propose an algorithm for generating cellular networks of terrorists,
as well as generating task and knowledge structures. Networks generated by the algorithm
show similar characteristics to what we know about real-life networks [80, 126].

Liu et al. [93] develop a dynamic criminal network formation model using data about
illegal behaviours of adolescents in the United States. As it turns out, the decision about
joining a criminal network and the amount of effort contributed to its activities depend on
the closest friends of an individual. The model is used to determine who is the key player,
the removal of whom generates biggest reduction in aggregated crime level. Results show
that being the key player rarely corresponds to high value of centrality measure or effort
put into criminal activities, but rather to the influence on other members of the network.

Spezzano et al. [138] create a model of organizational network, taking into account
different properties of its members. They analyse repercussions of removing a subset of
nodes from the network and assuming their functions by other nodes. Their model allows
to predict how network will reorganize itself after removal of some of its members. Authors
present a greedy heuristic algorithm for finding the set of vertices that will maximize the
decrease in organization’s performance. The algorithm is tested on both synthetic and
real-life terrorist networks and is able to predict new structure of the network with high
accuracy.

Game Theory

Qin et al. [121] use a number of game-theoretic and social network analysis methods to
analyse the Global Salafi Jihad network. The authors manage to identify leaders and
most important members of four different subsets of the network. Authors also introduce
the Web structural mining technique to the field. They employ PageRank algorithm [111]
to rate importance of terrorists and find local leaders of terrorist organizations.

Enders and Su [43] present two different approaches to modelling terrorist networks.
The rational-actor approach states that the whole network carries out rational optimiza-
tion process, designed to maximize expected utility. The structural approach concentrates
on actions of individual members of the group. Authors study how the density of con-

10

nections in the networks affects efficiency of communication and risk of getting caught.
They also predict lowering density of terrorist groups.

Shaikh et al. [132] use graph structural mining to analyse terrorist groups and argue
that members with high centrality measure should be targeted.

Lindelauf et al. [91] analyse how the need of secrecy affects the communication struc-
ture of covert networks. They model the optimal network structure on different stages of
organization life cycle. The authors show that during early stages of network development
in friendly environment all-to-all communication is optimal, while adopting a star net-
work is optimal in a hostile environment. For established organizations acting in hostile
environment cellular network structure proved to be optimal solution.

Lindelauf et al. [92] introduce a game theoretic approach to identify most important
members in terrorist networks. Authors use three different kinds of standard central-
ity measures—degree centrality, closeness centrality and betweenness centrality—-and
present a new game theoretic centrality measure. In this new measure centrality of a
node is its Shapley value in a modified version of a connectivity game [7]. With the use of
a weighted connectivity measure authors managed to identify the key members of Jemaah
Islamiyah involved in Bali bombings and Al Qaeda terrorists involved in 9/11 attacks.
Michalak et al. [101] propose an improved general algorithm for computing Shapley value
of connectivity games, as well as an approximation algorithm that allows to consider
networks of much greater size.

1.4 Publications

Most elements of this dissertation are effects of cooperation with other researchers, and
are being prepared to be published or have been presented at international conferences
and world-class journals.

• Chapter 3 is based on the fragments of article Hiding Individuals and Communities
in a Social Network [148], co-authored by Marcin Waniek, Tomasz Michalak, Talal
Rahwan and Michael Wooldridge. The article is available on arXiv and it is currently
in revision in the Nature Human Behaviour journal. Content of that chapter was
also presented at Connected Life 2015 conference in Oxford.

• Chapter 4 is based on the paper On the Construction of Covert Networks [149], co-
authored by Marcin Waniek, Tomasz Michalak, Talal Rahwan and Michael Wooldridge.
The work is accepted to the 2017 International Conference on Autonomous Agents
& Multiagent Systems (AAMAS 2017) in São Paulo. Its fragment concerning the
construction of the captain network (namely Section 4.4) was presented at Con-
nected Life 2015 conference in Oxford.

• Chapter 5 is based on the fragments of article Hiding Individuals and Communities
in a Social Network [148], mentioned in the first point. It was also presented at
Connected Life 2016 conference in Oxford.

• Chapter 6 is based on the article Hiding Relationships in a Social Network [147],
co-authored by Marcin Waniek, Tomasz Michalak and Talal Rahwan. The article
is prepared to be submitted to Artificial Intelligence journal. It will be presented

11

at Third Annual Conference on Network Science and Economics (part of the con-
ference series “Network Science in Economics” organised by Myrna Wooders and
Matthew Jackson) in April 2017 at Washington University in St. Louis, as well as
at Adversarial Reasoning in Multi-agent Systems (ADVERSE) workshop in May
2017 in São Paulo.

All theorems, lemmas, algorithms and simulation results have been obtained by the
author. The ROAM algorithm (presented in Section 3.5.1) and the CTR algorithm (pre-
sented in Section 6.5.3) have been designed in cooperation with Dr Talal Rahwan.

12

Chapter 2

Preliminaries

In this chapter we present some basic notations, problems and concepts that are used
throughout the dissertation. We specify the network notation that we use to describe all
our theoretic results. Next, we present the random network models and real-life datasets
that we test our algorithms on. We also describe the computational complexity concepts
that w make use of, including Turing machines, P and NP complexity classes, as well as
NP-hardness and NP-completeness. Finally, we list the NP-complete problems that we
use in our reductions.

Most of the following chapters also include sections on preliminaries, where we define
concepts specific for those chapter.

2.1 Basic Network Notation

Let G denote the set of all graphs. Because of the considered domain, in the remainder
of this dissertation we use the term network when referring to a graph. Let G = (V,E)
denote a network, where V = {v1, . . . , vn} is a set of n nodes and E ⊆ V × V is a set of
edges. By Ē = V ×V \ (

⋃
vi∈V {(vi, vi)}∪E) we denote the set of all non-existing edges—

we refer to them as non-edges. We denote the edge between nodes vi and vj by (vi, vj).
In case of an undirected network, E is a set of unordered pairs, i.e., we do not discern
between edges (vi, vj) and (vj, vi). Otherwise the network is said to be directed, i.e., E is
a set of ordered pairs. Unless stated otherwise, in this dissertation we consider undirected
networks. We also assume, that networks do not contain self-loops, i.e., ∀vi∈V (vi, vi) /∈ E,
as well as ∀vi∈V (vi, vi) /∈ Ē.

A path in a network G = (V,E) is an ordered sequence of distinct nodes, p =
〈vi1 , . . . , vik〉, such that each two consecutive nodes are connected by an edge from E.
When referring to a node vi belonging to a path p, we use the set notation, i.e., vi ∈ p
means that vi is present in path p. We consider the length of a path to be the number
of edges in that path. We denote the set of all shortest paths between a pair of nodes
vi, vj ∈ V by ΠG(vi, vj). The distance between two nodes vi, vj ∈ V , i.e., the length of a
shortest path between them, is denoted by dG(vi, vj). Furthermore, an undirected network
G is said to be connected (strongly connected in case of a directed network) if and only
if there exists a path between every pair of nodes in G. A directed network G is said to
be connected if and only if an undirected network with the same sets of nodes and edges
is connected.

13

We denote the set of predecessors of vi in G by PG(vi), i.e., PG(vi) = {vj ∈ V :
(vj, vi) ∈ E}. On the other hand, we denote the set of successors of vi in G by SG(vi),
i.e., SG(vi) = {vj ∈ V : (vi, vj) ∈ E}. We denote the set of neighbours of vi in G by
NG(vi), i.e., NG(vi) = PG(vi) ∪ SG(vi). Notice that in the case of an undirected network
we have that NG(vi) = PG(vi) = SG(vi). We denote by δG(vi) the number of neighbours
(the degree) of a node vi, i.e., δG(vi) = |N(vi)|. Finally, we denote by NG(vi, vj) the set
of common neighbours of nodes vi and vj, i.e., NG(vi, vj) = NG(vi) ∩NG(vj).

To make the notation clearer, we will often denote two arbitrary nodes by v and w,
instead of vi and vj. Moreover, we will often omit the network itself from the notation
whenever it is clear from the context, e.g., by writing d(v, w) instead of dG(v, w). This
applies not only to the notation presented thus far, but also to all future notation.

2.2 Datasets

To test the algorithms introduced in this dissertation, we use both synthetic and real-life
networks. As for the former ones, we use the following standard models:

• Scale-free networks generated using the Barabási-Albert model [10]. In this model
nodes are added to a network one by one. If there are m or less already existing
nodes (where m is the parameter of the network creation process), we add edges
between the new node and all already existing nodes. Otherwise, we connect the new
node with m already existing nodes, with probability proportional to the degrees
of these nodes. More formally, the probability pi,j of choosing an already existing
node vj as the one to be connected to the new node vi in each of m rounds is:

pi,j =
δ(vj)∑

vk:k<i∧vk /∈N(vi) δ(vk)
.

We denote such a network by ScaleFree(n,m), where n is the number of nodes
and m is the number of edges added with each node. The name comes from the
fact that networks created using this model have scale-free degree distribution, i.e.,
distribution that follows the power-law. Figure 2.1 presents an example of a network
generated using the Barabási-Albert model with n = 10 and m = 2.

• Small-world networks generated using the Watts-Strogatz model [150]. The creation
process is as follows. We start with nodes forming a ring, each node connected to
d
2 previous nodes and d

2 following nodes. Then each edge is rewired with fixed
probability p. A rewired edge (vi, vj), where i < j, is replaced with an edge (vi, vk),
where vk is chosen uniformly at random from nodes in V \ (N(vi) ∪ {vi, vj}). We
denote such a network by SmallWorld(n, d, p), where n is the number of nodes, d
is the average degree and p is the rewiring probability. The name comes from the
fact that networks created using this model exhibit small-world properties, such as
short average distance between nodes. Figure 2.2 presents an example of a network
generated using the Watts-Strogatz model with n = 10, d = 4 and p = 1

4 .

• Random graphs generated using the Erdős-Rényi model [44]. In this model we add
an edge between each pair of nodes with some fixed probability, independently of

14

the other edges. We denote such a network by RandomGraph(n, d), where n is the
number of nodes and d is the expected average degree, i.e., d = p(n − 1), where
p is the probability of adding and edge between two nodes. Figure 2.3 presents an
example of a network generated using the Erdős-Rényi model with n = 10 and
d = 4.

Figure 2.1: An example of
a scale-free network.

Figure 2.2: An example of
a small-world network.

Figure 2.3: An example of
a random graph network.

We now describe the real-life datasets used in our experiments:

• Facebook [86]—this group of datasets consists of three fragments of the Facebook
social network, containing 61 nodes, 272 edges (small fragment), 333 nodes, 2523
edges (medium fragment) and 786 nodes, 14027 edges (large fragment) respectively.
Each anonymised dataset represents what authors call an ego-network, a network
of connections between all friends of a surveyed Facebook user. Authors intend to
detect different social circles in the data, but the only information we use in our
experiments is the structure of the network.

• Madrid terrorist network [62]—it is the network of terrorists behind the 2004 Madrid
bombing, consisting of 70 nodes and 98 edges. The network includes people involved
in the organisation of the attack in different ways, e.g., terrorists who actually
carried out the bombing, bomb makers, people who sold them the explosives, and
financial supporters. Edges in the network represent both strong connections, such
as childhood friendships or being involved in previous attacks, and weaker ones,
such as casual encounters or financial transactions. The network was created based
on the data revealed during the investigation.

• Bali terrorist network [79]—it is the network of terrorists behind the 2002 Bali
attack, consisting of 17 nodes and 63 edges. Nodes represent members of the terrorist
cell that planned and conducted the attack. Edges map communication channels of
the network and represent either phone conversations, e-mail exchanges, or face-to-
face conversations.

• WTC terrorist network [80]—it is the network of terrorists behind the 9/11 attacks,
consisting of 36 nodes and 64 edges. The network was mapped a few weeks after

15

the attack, based on publicly available information. The set of nodes consists of
both 19 hijackers, who were aboard the plane, as well as their known direct con-
tacts, financial supporters and instructors. The connections include history of past
meetings, family ties, and common training.

• Zachary’s Karate Club [156]—it the social network of participants of a university
karate club, consisting of 34 nodes and 78 edges. The data was gathered between
year 1970 and 1972 and represents friendship network between club members, i.e.,
the history of social interactions outside the regular activities of the club. At one
point the club fell apart into two separate organizations as a result of the conflict
between the main instructor and the club president. We, however, consider the
structure of the club as before this fission.

• Les Misérables [78]—it is the network of co-occurrences of characters in Victor
Hugo’s novel “Les Misérables”, consisting of 77 nodes and 254 edges. Two nodes,
representing characters from the book, are connected with an edge if and only if
they encounter each other in a chapter.

• Greek blogs [157]—it is a network of Greek political blogs, consisting of 142 nodes
and 354 edges. The dataset includes blogs discussing the five Greek parliamentary
parties, as of November 2010. Edges represent hyperlinks between blogs websites.

2.3 Computational Complexity

We now describe the basic concepts and problems of the computational complexity theory
used in this dissertation.

2.3.1 The Turing Machine

The central concept of the computational complexity theory is the Turing machine [145].
Turing machine is an abstract machine, capable of performing computation. Formally,
Turing machine is a tuple (Q,A, [,Ain, f, q0, qA), where:

• Q is a finite set of states;

• A is a set of alphabet symbols;

• [∈ A is the blank symbol;

• Ain ⊆ A \ {[} is the set of input symbols;

• f : (Q \ {qA})× A→ 2Q×A×{J,I} is the transition function;

• q0 is the initial state;

• qA is the accepting state.

16

The Turing machine operates on an infinite tape divided into cells. Each cell contains
a single symbol from the alphabet A. Initially the tape contains a finite input encoded
with the symbols from Ain, all other cells of the infinite tape contain blank symbol [.

The Turing machine posses a head that can read one tape cell at a time, and stores a
single state from set Q. Initially, the head is positioned over the first symbol of the input,
and stores the initial state q0.

The Turing machine operates in consecutive, discrete rounds. In each round it per-
forms an action encoded with the transition function f , based on the content of the cell
that the head is currently over and its currently stored state. Let (q′, a′, d) ∈ f(q, a). In
this situation the Turing machine changes the content of the cell that its head is posi-
tioned over from a to a′, it changes its stored state from q to q′, and it shifts its head
either one cell to the left (if d =J), or one cell to the right (if d =I). The Turing machine
ends its operation when its stored state is changed to the accepting state qA. We call the
complete run of a Turing machine a computation.

We call Turing machine the deterministic Turing machine if for every possible situ-
ation it encodes exactly one instruction, i.e., ∀q∈Q\{qA}∀a∈A|f(q, a)| = 1. Otherwise it is
called the non-deterministic Turing machine and we assume that it chooses the action to
perform uniformly at random from set f(q, a). When analysing computations of a non-
deterministic Turing machine we consider all possible ways of choosing the next action
from set f(q, a).

2.3.2 Complexity Classes and Reduction Process

Turing machines can be used to solve computational problems. We say that the Turing
machine M outputs symbol a for input x if there exists a computation of M such that
after it is finished, the head of the machine is positioned over a cell with symbol a.

Let language L be a set of finite words over the symbols from Ain, i.e., L ⊆ A∗in. We
say that the Turing machine M , such that its alphabet contains symbols 0 and 1, i.e.,
{0, 1} ⊂ A, recognizes language L if:

• for every x ∈ L there exists a computation of machine M such that M outputs 1
for input x;

• for every x /∈ L machine M outputs 0 for input x for every computation.

Due to the nature of considered questions, we will call L decision problem (or simply
problem) instead of language, and we will say that machine M solves problem L, rather
than that M recognizes it.

We say that Turing machine M solves problem L in polynomial time if there exists a
polynomial w such that for any input x there exists a computation of M that ends in a
number of rounds smaller than w(|x|), where |x| is the length of input x, i.e., the number
of tape cells that it is encoded on.

We say that the decision problem L is in the complexity class P (or that it is simply
in P) if there exists a deterministic Turing machine M that solves L in polynomial time.
Intuitively, those are the problems that we know an effective solution to.

We say that the decision problem L is in the complexity class NP (or that it is simply
in NP) if there exists a non-deterministic Turing machine M that solves L in polynomial

17

time. Intuitively, those are also the problems that we do not know an effective solution
to and we check every possible answer to find the solution. Note that P ⊂ NP , although
we do not know whether P = NP or not [33] (it is one of the fundamental questions in
the computational complexity theory).

We say that problem A can be reduced to problem B if there exist a function f that
can be computed in polynomial time such that for every input x we have x ∈ A ⇐⇒
f(x) ∈ B. Intuitively, A can be reduced to B if we can effectively solve A by using
procedure solving B as a subroutine.

We say that the computational problem L is NP-hard if any problem L′ in NP can be
reduced to L. We say that the computational problem L is NP-complete if L is NP-hard
and L is in NP.

Typical method of proving that a computational problem L in NP-hard is by reducing
a known NP-complete problem L′ to L. This way any problem in NP can be first reduced
to L′ and subroutines computing L′ can be reduced to L. We use this technique in all
computational complexity proofs in this dissertation.

2.3.3 NP-Complete Problems

We now describe well-known NP-complete problems [70] used in the NP-hardness proofs
throughout this dissertation:

• Set Cover problem—an instance of this problem is defined by a universe U =
{u1, . . . , ul}, a collection of sets S = {S1, . . . , Sm} such that ∀jSj ⊂ U , and an
integer k ¬ m. The goal is to determine whether there exist k elements of S the
union of which equals U .

• 3-Set Cover problem—this is the version of Set cover problem where every element
of S is of size 3.

• Finding k-Clique problem—an instance of this problem is defined by a network
G = (V,E) and an integer k ¬ n. The goal is to determine whether there exist k
nodes in G that form a clique, i.e., there exists V ′ ⊆ V such that |V ′| = k and
∀vi,vj∈V ′(vi, vj) ∈ E.

• Finding Hamiltonian Cycle problem—an instance of this problem is defined by a
network G = (V,E). The goal in to determine whether there exists a cycle that
visits each node exactly once.

It is worth noting that, even though their NP-completeness, there exist effective ap-
proximation algorithms for these problems, i.e., algorithms computing solutions that are
close to optimal [67]. Many approximation algorithms use techniques such as linear pro-
gramming [146], others assume a greedy approach [19].

Some solutions of the network problems are designed specifically for a certain class of
networks, e.g., planar networks [9] (intuitively, a planar network is a network that can be
drawn in a way such that no edges cross each other).

18

Chapter 3

Disguising Centrality of a Node

In this chapter we discuss the problem of disguising the centrality of a given single node,
while preserving its influence on the network activities. We formally define the problems,
investigate their computational complexity, and propose heuristic solutions that can be
realistically run for massive social networks.

3.1 Introduction

The on-going process of datafication continues to turn many aspects of our lives into
massive amounts of computerised data [97]. This data is being collected and analysed
for various applications by both public and private institutions. One particular type of
data that has received significant attention over the past decade, mainly due to dynamic
growth of social media, concerns the structure of social connections. A number of tools
have been advocated for social network analysis, with one of the key problems being the
identification of key individuals within a network [20].

Although the process of datafication has undeniably enhanced our lives in various
ways [69], it has also given rise to many legitimate privacy concerns. Critics point out that
it contributes towards the ever growing digital surveillance of our lives by both business
enterprises and public institutions. For instance, Mislove et al. [103] demonstrated that
by analysing the structure of Facebook’s social network, as well as the attributes of its
users, it is possible to infer otherwise-private information about other Facebook users.
This highlighted that sharing seemingly harmless information may expose substantial
knowledge about ourselves.

To tackle such privacy issues, various countermeasures have been proposed, ranging
from strict legal regulations [1], through algorithmic solutions [72], to market-like mech-
anisms that allow participants to monetize their personal information [84]. However, to
date, only a few such countermeasures have been implemented, leaving the privacy issue
largely unresolved, e.g., as is evident from the very recent release of Facebook’s Global
Government Requests Report [2], which revealed a global increase in government requests
to secretly access user data. Through its social mapping program, the US government’s
National Security Agency (NSA) reportedly created a sophisticated web of social connec-
tions of some US citizens [135]. Furthermore, it is unlikely that effective legal mechanisms
will be introduced in countries with authoritarian regimes, where social networking sites

19

and other internet content are striclty controlled, and anti-governmental blogs and activ-
ities are censored [76, 77].

Against this background, we ask the following question: can individuals proactively
manage their social connections so that their privacy is less exposed to the workings of
network analysis tools? To put it differently, can we disguise our standing in the network to
escape detection? This matters because, on one hand, it helps the general public to protect
their privacy against intrusion from government and corporate interests, and, on the other
hand, it gives counterterrorism units and law-enforcement agencies an insight into how
criminals and terrorists could try to escape detection, especially given the increasing
reliance of terrorists on social-media survival strategies [109, 68]. To date, however, this
fundamental question has received little attention in the literature, as most research
efforts have focused on developing ever more sophisticated network analysis tools, without
considering how such tools can be evaded. We argue that when assessing the effectiveness
of a social network analysis mechanism, one should take into consideration the difficulty
of fooling this mechanism.

To address the above question from an individual’s viewpoint, we analyse the possible
ways of avoiding centrality measure analysis. Centrality measure is a function that, using
the structure of the network, evaluates the importance of every node. We focus on three
fundamental centrality measures, namely the degree centrality, the closeness centrality,
and the betweenness centrality, and study how an individual can avoid being identified
as a key player by those measures without compromising her influence. Since, from a
graph-theoretic perspective, this is fundamentally an optimization problem, we analyse
its computational complexity to study the theoretical limits of one’s capability to disguise
importance in a social network.

Although we show that an optimal solution is hard to compute, we demonstrate the
effectiveness of a surprisingly simple heuristic, whereby the rewiring of social connections
is restricted to the individual’s immediate network neighbourhood. Specifically, it in-
volves two actions that are already available on popular social-media platforms, namely
“unfriending” a certain friend, and introducing two friends to each other. Our results
demonstrate, surprisingly, that disguising individuals is in practice possible using a sim-
ple, readily implementable heuristic. We quantify the cost-benefit profile of using these
heuristics in various empirical networks.

The remainder of this chapter is organized as follows. In Section 3.2 we present for-
mal definitions of centrality measures and influence models. In Section 3.3 we define the
problems of Disguising Centrality and Influence Recovery. In Section 3.4 we show the
computational complexity of said problems. In Section 3.5 we present our ROAM heuris-
tic that can be used to effectively hide one’s importance in a social network, without
sacrificing one’s influence. In Section 3.6 summarize and discuss our findings.

3.2 Preliminaries

We now formally define three most popular centrality measures, i.e., the degree centrality,
the closeness centrality and the betweenness centrality, as well as two influence models,
i.e., Independent Cascade and Linear Threshold.

20

3.2.1 Centrality Measures

The concept of centrality in human organizations was introduced by Bavelas [12]. Intu-
itively, a centrality measure expresses the importance of a node relatively to all other
nodes in a network. Formally, it is a function c : G × V → R. Three best-known cen-
trality measures are the degree centrality, the closeness centrality and the betweeness
centrality [55].

Degree centrality was introduced by Shaw [133]. It assumes that the importance of a
node is proportional to the number of its neighbours. In particular, normalized (to have
values between 0 and 1) degree centrality of a node vi ∈ V in a network G is defined as
follows:

cdegr(G, vi) =
δ(vi)
n− 1

.

Closeness centrality, introduced by Beauchamp [13], quantifies importance of a node in
terms of shortest distances from this node to all other nodes in the network. In particular,
the most important node is the one with the shortest average path length to all other
nodes. Formally, normalized (to have values between 0 and 1) closeness centrality of a
node vi ∈ V in a (strongly) connected network G can be expressed as:

cclos(G, vi) =
n− 1∑

vj∈V d(vi, vj)
.

Betweenness centrality was developed independently by Anthonisse [8] and Free-
man [54]. This measure quantifies the importance of a given node in the context of a
network flow. In more detail, if we consider all the shortest paths in the network, then
the more such paths traverse through a given node, the greater is the role of that node
in the network. Formally, normalized (to have values between 0 and 1) betweenness cen-
trality of a node vi ∈ V in a (strongly) connected network G can be expressed as:

cbetw(G, vi) =
2

(n− 1)(n− 2)

∑
vj ,vk∈V \{vi}

|{p ∈ Π(vj, vk) : vi ∈ p}|
|Π(vj, vk)|

.

To illustrate the meaning of centrality measures, consider the network G depicted in
Figure 3.1. The degree centrality of node v3 is cdegr(G, v3) = 4

5 , as it has 4 neighbours out
of 5 possible. The closeness centrality of node v3 is cclos(G, v3) = 5

4×1+1×2 = 5
6 , as there

are 4 nodes in distance 1 to v3 (namely v1, v2, v4 and v5), and one node in distance 2 to v3

(namely v6). The betweenness centrality of node v3 is cbetw(G, v3) = 2
5×4(6×1+1× 1

2) = 13
20 ,

as v3 controls all shortest paths between any node in {v1, v2} and any node in {v3, v5, v6}
(there are 6 such pairs), as well as one of two shortest paths between v4 and v5 (the other
shortest path being controlled by v6). Node v3 is the most central node according to all
three centrality measures.

3.2.2 Models of Influence

The propagation of influence through the network is often described in terms of node
activation. When a certain node is sufficiently influenced by its neighbours, it becomes
“active”. It then starts to influence any “inactive” neighbours, and so on. To initiate this

21

𝑣6

𝑣4

𝑣5

𝑣3

𝑣1

𝑣2

Figure 3.1: A sample network to illustrate centrality measures.

propagation process, a set of nodes (seed set) needs to be activated right from the start.
Assuming that time is discrete, we denote by I(t) ⊆ V the set of nodes that are active at
round t, implying that I(1) is the seed set. The way influence propagates to inactive nodes
depends on the influence model under consideration. The two main models of influence
are:

• Independent Cascade [58]: In this model, every pair of nodes is assigned an activation
probability, p : V ×V → [0, 1]. Then, in every round, t > 1, every node vi ∈ V that
became active in round t−1 activates every inactive successor, vj ∈ S(vi)\ I(t−1),
with probability p(vi, vj). The process ends when there are no new active nodes,
i.e., when I(t) = I(t− 1).

The intention of this model is to resemble the process of spreading rumour in
a social network. Each member of the network passes the news with probability
depending on how often she contacts with others. However, after some time the
rumour becomes outdated and the process stops.

• Linear Threshold [73]: In this model, every node vi ∈ V is assigned a threshold
value tvi which is sampled (according to some probability distribution) from the set
{0, . . . , |P (vi)|}. Then, in every round, t > 1, every inactive node vi becomes active,
i.e., becomes a member of I(t), if the number of her active predecessors meets or
exceeds her threshold, i.e., if |I(t− 1) ∩ P (vi)| ­ tvi . The process ends when there
are no new active nodes, i.e., when I(t) = I(t− 1).

The intuition behind this model is the analysis of situations where costs and benefits
of adopting a particular behaviour depends on how many other members of the
network adopt it [59], e.g., people who smoke cigarettes just because their friends
and co-workers do so.

In either model, the influence of a node vi on another node vj is denoted by ıG(vi, vj)
and is defined as the probability that vj gets activated given the seed set is {vi}. We
assume that ıG(vi, vi) = 0 for all vi ∈ V . The influence of vi over the entire network G is
then defined as ıG(vi) =

∑
vj∈V ıG(vi, vj).

22

3.3 Problem Definitions

The goal of the disguising process is to hide the importance of the chosen source node,
v†, without sacrificing its influence on the network. To achieve this goal we either add or
remove edges from the network. We assume a limited budget, b, specifying the maximum
number of edges that are allowed to be added or removed. To make the process more
tractable, we divide it into two separate steps.

In the first step we rewire the network so as to minimize each centrality score of
v† separately. In the second step we attempt to compensate for any influence that v†

might have lost during the centrality minimization phase. We consider two variants of
the Influence Recovery problem, the first variant focuses on the influence of v† on every
single node separately, whereas the second focuses on the aggregated influence of v† over
the network.

We also introduce two additional elements, the set Â of edges allowed to be added and
the set R̂ of edges allowed to be removed. Their purpose is twofold. Firstly, we use them
to avoid overwriting changes made by the previous steps, e.g., adding during influence
recovery the same edge that was previously removed during the centrality minimization
step. Secondly, we consider the possibility that some edges are impossible to add or remove
due to objective reasons, e.g., we want to preserve a particular communication structure
within the network or we want to avoid adding edges—or cannot add edges—between
certain individuals.

We now formulate the formal definitions of our computational problems.

Definition 1 (Disguising Centrality). The problem is defined by a tuple (G, v†, b, c, R̂, Â),
where G = (V,E) ∈ G is a network, v† ∈ V is the source node (whose centrality is to
be minimized), b ∈ N is the budget specifying the maximal number of edges that can be
added or removed, c : G × V → R is a centrality measure, R̂ ⊆ E is the set of edges
allowed to be removed, and Â ⊆ Ē is the set of edges allowed to be added. The goal is
then to identify two sets of edges, R∗ ⊆ R̂ and A∗ ⊆ Â, such that: |A∗| + |R∗| ¬ b and
G∗ = (V, (E ∪ A∗) \R∗) is connected (strongly connected if G is directed) and G∗ is in:

arg min
G′∈{(V,(E∪A)\R):R⊆R̂,A⊆Â,|A|+|R|¬b}

c(G′, v†).

The intuition behind this problem is as follows. We try to find the sets of edges to add
and remove from the network (taking into consideration restrictions represented by sets
Â and R̂, as well as limited budget) such that the chosen centrality measure c gets as low
as possible. We repeat this process for each centrality that we wish to lower, excluding
just removed edges from set Â and excluding just added edges from the set R̂, to avoid
overwriting our changes. Each centrality has its own budget, and after they are spent,
we wish to use whatever budget we have left to rebuild our influence on the network. To
this end, we define the following problems.

Definition 2 (Global Influence Recovery). This problem is defined by a tuple
(G, v†, inf, R̂, Â,Φ), where G = (V,E) ∈ G is a network, v† ∈ V is the source node (whose
influence is to be recovered), inf : V × V → R is an influence measure, R̂ ⊆ E is the
set of edges allowed to be removed, Â ⊆ Ē is the set of edges allowed to be added, and
Φ ∈ R is the total influence to be recovered. The goal is then to identify two sets of edges,

23

R∗ ⊆ R̂ and A∗ ⊆ Â, such that G∗ = (V, (E ∪ A∗) \R∗) is connected (strongly connected
if G is directed) and G∗ is in:

arg min
G′∈{(V,(E∪A)\R):R⊆R̂,A⊆Â,infG′ (v†)­Φ}

|A|+ |R|.

In this problem we intend to rebuild the aggregated influence on the network that the
source node might have lost during the process of lowering centrality. Note that this time
we do not specify the budget, but rather we try to find the smallest set of edges that
allows to regain the influence.

Finally, we present an alternative version of the problem, where we do not rebuild the
total influence over the entire network, but rather where we aim to regain the previous
level of influence on each separate node.

Definition 3 (Individual Influence Recovery). This problem is defined by a tuple
(G, v†, inf, R̂, Â, φ), where G = (V,E) ∈ G is a network, v† ∈ V is the source node (whose
influence is to be recovered), inf : V × V → R is an influence measure, R̂ ⊆ E is the
set of edges allowed to be removed, Â ⊆ Ē is the set of edges allowed to be added, and
φ : V → R specifies the influences to be recovered (i.e., for every vi ∈ V we want the
influence of v† over vi to be at least φ(vi)). The goal is then to identify two sets of edges,
R∗ ⊆ R̂ and A∗ ⊆ Â, such that G∗ = (V, (E ∪A∗) \R∗) is connected (strongly connected,
if G is directed) and G∗ is in:

arg min
G′∈{(V,(E∪A)\R):R⊆R̂,A⊆Â,∀vi∈V infG′ (v†,vi)­φ(vi)}

|A|+ |R|.

Note that for both the Independent Cascade and the Linear Threshold influence mod-
els, the only way to increase a node’s influence is to add edges to the network, i.e., re-
moving edges always lowers influence. Nonetheless, we allow for the removal of edges as
some other models of influence might not have this property.

We now move to the complexity analysis of the just defined problems.

3.4 Complexity Analysis

Our findings regarding the complexity of the problems defined in the previous section are
summarized in Table 3.1.

From the computational point of view, disguising the degree centrality of v† is easy.
The only way to decrease this centrality is to remove edges connecting v† to its neighbours.
The decrease in centrality is only affected by the number of removed edges, not by their
choice. Hence, the problem of Disguising Degree Centrality is clearly in P.

Next, we study the problems of Disguising Closeness Centrality and Disguising Be-
tweenness Centrality, followed by the problem of Influence Recovery under the Indepen-
dent Cascade model and under the Linear Threshold model. As it turns out, all of these
problems are either NP-complete or NP-hard.

Theorem 1. Disguising Closeness Centrality is NP-complete.

24

Problem Complexity
Disguising Centrality (Degree) P
Disguising Centrality (Closeness) NP-complete
Disguising Centrality (Betweenness) NP-complete
Individual Influence Recovery (IC) NP-hard
Individual Influence Recovery (LT) NP-hard
Global Influence Recovery (IC) NP-hard
Global Influence Recovery (LT) NP-hard

Table 3.1: Summary of our computational hardness results, where LT denotes Linear
Threshold influence model and IC denotes Independent Cascade influence model.

Proof. The decision version of the optimization problem is the following: given a network
G = (V,E), a source node v†, two sets R̂ ⊆ E, Â ⊆ Ē, a budget b ∈ N and a value
x ∈ R, does there exist two sets, R∗ ⊆ R̂ and A∗ ⊆ Â such that |A∗| + |R∗| ¬ b, and
the network (V, (E ∪ A∗) \ R∗) is connected (strongly connected if G is directed) and
cclos((V, (E ∪ A∗) \R∗), v†) ¬ x.

This problem clearly is in NP, as given a solution, i.e., two sets A∗ and R∗, we can
verify whether |A∗|+|R∗| ¬ b and cclos((V, (E∪A∗)\R∗), v†) ¬ x in polynomial time. This
only requires computing the closeness centrality of node v† in network (V, (E ∪A∗) \R∗).

The main idea of the NP-hardness proof is as follows. We show reduction from the NP-
complete Finding Hamiltonian Cycle problem. We modify the network from the Finding
Hamiltonian Cycle problem instance and use it as an input for the minimizing closeness
centrality problem. We know that the optimal network structure in terms of minimizing
closeness centrality is a path for undirected networks and a cycle for directed networks.
From such a solution to minimizing closeness centrality we can easily obtain a Hamiltonian
cycle in the original network.

We will now show that the decision version of our problem is NP-hard. To this end,
let us denote by q ∈ R the smallest possible closeness centrality of v† in any (strongly)
connected network whose set of nodes is V . Let us also denote by Q the network with
the smallest possible number of edges such that the closeness centrality of v† in Q is q.
One can see that q = 2

n
in the case of an undirected network (Q is then a path of which

v† is an end), and q = (
∑n−1
i=1

1
i
)/(n − 1) in the case of a directed network (Q is then a

directed cycle).
Let us comment on the structure of Q. Clearly, in order to achieve the lowest possible

closeness centrality, the spanning tree of undirected Q rooted in v† has to be a path. Any
other edge added to Q creates a shorter path from v† to at least one other node, hence
Q must be a path in the undirected case. In the directed case the argument is similar,
although to ensure strong connectivity it is necessary to add an edge between end of the
path and v†.

With this in mind, the proof involves a reduction from the Finding Hamiltonian Cycle
problem, as defined in Section 2.3.3 (i.e., the problem of determining whether there exists
a cycle that visits each node exactly once) to the decision problem of determining whether
it is possible to reduce the closeness centrality of v† to a value smaller than, or equal to
q.

To this end, given some arbitrary network, G′ = (V ′, E ′), be it directed or undirected,

25

let us modify G′ so as to obtain a new network, G = (V,E), as illustrated in Figures 3.2
and 3.3. Formally, we do so by choosing some arbitrary node, v′ ∈ V ′, and then setting:

V = V ′ ∪ {v†, w1, w2}, and E = E ′ ∪ {(v†, v′), (w1, w2)} ∪ {(v, w1) : v ∈ NG′(v′)}

in the case of an undirected network, or setting:

V = V ′ ∪ {v†, w1}, and E = E ′ ∪ {(v†, v′), (w1, v
†)} ∪ {(v, w1) : v ∈ PG′(v′)}

in the case of a directed network.
We will now show that the Finding Hamiltonian Cycle problem in G′ is equivalent to

the following decision problem: Given network G and budget b = |E ′| − |V ′| + |PG′(v′)|,
where Â = ∅ and R̂ = E, determine whether it is possible to reduce the closeness
centrality of v† to a value lesser than or equal to q, by removing at most b edges from G.
Throughout the remainder of the proof, the edges and nodes in G that were present in
G′ will be referred to as original.

𝑣′

𝑣† 𝑤1 𝑤2

𝑣′′ 𝑣′ 𝑣′′

𝑣†

𝑤1

𝑤2

𝑣′

𝑣′′

𝐺′ 𝐺 𝑄

Figure 3.2: The main steps of reducing the Finding Hamiltonian Cycle problem to the
Disguising Closeness Centrality problem in an undirected network.

𝐺′

𝑤1

𝑣′′

𝑣†

𝑣′

𝑣′

𝑣† 𝑤1

𝑣′′ 𝑣′ 𝑣′′

𝑄𝐺

Figure 3.3: The main steps of reducing the Finding Hamiltonian Cycle problem to the
Disguising Closeness Centrality problem in a directed network.

Firstly, we will show that if G′ has a Hamiltonian cycle then it is possible to obtain
Q by removing |E ′| − |V ′|+ |PG′(v′)| edges from G. To this end, fix a Hamiltonian cycle
of G′, then:

• remove from G all original edges that are not in the Hamiltonian cycle; there are
exactly |E ′| − |V ′| such edges;

26

• in the Hamiltonian cycle, there are exactly two edges of which v′ is an end; remove
any of those edges in the undirected network, or the one pointing to v′ in the
directed network; let us denote the removed edge as (v′′, v′);

• remove all edges from all predecessors of v′ to w1, with the exception of (v′′, w1);
there are exactly |PG′(v′)| − 1 such edges.

In so doing, we have obtained the network Q by removing a total of |E ′|− |V ′|+ |PG′(v′)|
edges from G (see figures 3.2 and 3.3).

Secondly, we show that if it is possible to obtain Q by removing |E ′| − |V ′|+ |PG′(v′)|
edges from G, then there exists a Hamiltonian cycle in G′. We will first deal with the
undirected case, before moving on to the directed one.

In the undirected case, observe that nodes v† and w2 each have a degree of 1 in G,
since their only neighbours are v′ and w1, respectively. Now, since Q must be connected,
and since we obtained Q by only removing (rather than adding) edges from G, the nodes
v† and w2 must each have degree equal to 1 in Q. Consequently, they must be the two
ends of Q. This, in turn, implies that since w1 must have exactly two neighbours in Q
and one of them is w2, the other one must be one of the original nodes, let us call it
v′′. This, as well as the fact that v† is the only node connected to v′, implies that the
segment of Q between v′ and v′′ contains all the original nodes from G′ and only original
edges from G′ (recall that we did not add any edges between the original nodes). Finally,
by adding to that segment the original edge between v′′ and v′ (that was present in the
original network G′, but was removed during the creation of G), we obtain a Hamiltonian
cycle in G′.

As for the directed case, we observe that node v† has only one successor in Q, namely
v′, and only one predecessor in Q, namely w1. We also know that w1 has only one pre-
decessor in Q, let us call that predecessor v′′. These facts imply that the segment of Q
between v′ and v′′ contains all original nodes from G′ and only original edges from G′

(again, recall that we did not add any edges between the original nodes). By adding to
that segment the original edge between v′′ and v′ (that was present in the original network
G′, but was removed during the creation of G), we obtain a Hamiltonian cycle in G′.

We have shown that a Hamiltonian cycle in G′ exists if and only if it is possible to
reduce the closeness centrality of v† to q by removing exactly |E ′| − |V ′|+ |PG′(v′)| edges
from G, which concludes the proof.

Notice that the proof takes advantage of the fact that the optimal structure in terms
of minimizing closeness centrality is either a path (in case of an undirected network) or
a cycle (in case of a directed network). Due to this, we are able to use the network being
part of a Finding Hamiltonian Cycle problem instance with only minimal modifications.

Having proven the NP-completeness of Disguising Closeness Centrality problem, we
move to the proof for Disguising Betweenness Centrality. Both it and the following proofs
in this section use a slightly different approach. Instead of performing minor changes on
a given network, we encode the structure of a Set Cover problem instance in an entirely
new network and take advantage of the correspondence between optimal solutions to our
problem and to the problem of Set Cover.

Theorem 2. Disguising Betweenness Centrality is NP-complete.

27

Proof. The decision version of the optimization problem is the following: given a network
G = (V,E), a source node v†, two sets R̂ ⊆ E, Â ⊆ Ē, a budget b ∈ N and a value
x ∈ R, does there exist two sets R∗ ⊆ R̂ and A∗ ⊆ Â such that |A∗| + |R∗| ¬ b, and
the network (V, (E ∪ A∗) \ R∗) is connected (strongly connected if G is directed) and
cbetw((V, (E ∪ A∗) \R∗), v†) ¬ x.

This problem clearly is in NP, as given a solution, i.e., two setsA∗ andR∗, we can verify
whether |A∗|+ |R∗| ¬ b and cbetw((V, (E∪A∗)\R∗), v†) ¬ x in polynomial time. This only
requires computing the betweenness centrality of node v† in network (V, (E ∪ A∗) \R∗).

The main idea of the NP-hardness proof is as follows. We will show a reduction from
the NP-complete Set Cover problem. We build a network that reflects the structure of a
given Set Cover problem instance and use it as an input for the minimizing betweenness
centrality problem. We allow the addition of edges that corresponds to choosing sets in the
Set Cover problem instance. Finally, we show that the optimal solution of the minimizing
betweenness centrality problem corresponds to the solution of the given instance of the
Set Cover problem.

We will now show that the decision version is NP-hard. To this end, we give a reduction
from the NP-complete Set Cover problem, as defined in Section 2.3.3. To remind the
reader, U = {u1, . . . , ul} denotes the universe, S = {S1, . . . , Sm} denotes the set of
subsets of the universe, and the goal is to determine whether there exist k elements of S
the union of which equals U .

𝑤1

𝑢1

𝑢2

𝑢3
...

𝑆1

𝑆2

𝑆𝑚

𝑤0

𝑢𝑙

...

𝑣†

Figure 3.4: An undirected network used to
reduce the Set Cover problem to Disguising
Betweenness Centrality of v†. To solve both
problems, we consider adding (some of) the
dashed (green) edges.

...
...

𝑤1

𝑢1

𝑢2

𝑢3

𝑆1

𝑆2

𝑆𝑚

𝑤0

𝑢𝑙

𝑣†

Figure 3.5: A directed network used to re-
duce the Set Cover problem to Disguising
Betweenness Centrality of v†. To solve both
problems, we consider adding (some of) the
dashed (green) edges.

First, let us create a network G as shown in figures 3.4 and 3.5. More specifically, we
create one node for every Sj ∈ S, one node for every ui ∈ U , and three additional nodes,
v†, w0 and w1. Next, we add (either undirected or directed) edges as follows. We add the
edges (v†, w0), (w1, v

†), and for every node ui ∈ U we add an edge (ui, w1), as well as the
edges (Sj, ui) for every Sj where ui ∈ Sj. In case of a directed network, we also add the
edges (w1, ui) for ui ∈ U and edges (ui, Sj) for every ui ∈ Sj, as well as the edge (w0, w1).

Now, consider the problem of Disguising Betweenness Centrality of v† in G given
R̂ = ∅, Â = {(S1, w0), . . . , (Sm, w0)}, and budget b = k. Note that v† controls (i.e.,
lays on) every shortest path to w0, and does not control any shortest path between any

28

other pair of nodes. As such, to minimize the betweenness centrality of v†, we need to
create alternative shortest paths to w0. This should be done by adding (some of) the
edges in {(S1, w0), . . . , (Sm, w0)}, since no other edge can be added, and no edge can be
removed (following the definitions of R̂ and Â). To be more precise, we can add at most k
of edges {(S1, w0), . . . , (Sm, w0)}, since we cannot exceed the budget. After this process,
the betweenness centrality of v† may drop to as low a value as q = 2

(n−1)(n−2) in the
undirected case (where v† controls shortest paths between w1 and w0), or q = 1

(n−1)(n−2)

in the directed case (where v† controls the shortest path from w1 to w0). This happens
when v† no longer controls any of the shortest paths to w0 except for the one from w1

to w0. Note that adding an edge (Sj, w0) creates a new shortest path from every node
ui ∈ Sj to w0, as well as a new shortest path from every node Sj′ such that ui ∈ Sj′ to w0

(either directly to w0 in case of Sj, or running through ui and Sj in case of other Sj′ such
that ui ∈ Sj′). This implies that the betweenness centrality of v† can be reduced to q if
and only if we create such a new shortest path to w0 for every ui ∈ U , i.e., if there exists
at most k elements of S the union of which equals U . This concludes the proof.

Having proven the NP-completeness of Disguising Betweenness Centrality problem,
we now move to the proof of NP-hardness of Influence Recovery problem under the
Independent Cascade model.

Interestingly, while we are able to prove NP-completeness of the problems of Disguis-
ing Closeness Centrality and Disguising Betweenness Centrality, in case of the Influence
Recovery problems we are only able to prove NP-hardness, i.e., we do not show that they
are in NP. The reason is that a solution to any of the Disguising Centrality problems is
easy to verify, i.e., given a solution we are able to confirm that it is correct by perform-
ing a polynomial computation. At the same time, however, verifying a solution to any
of the Influence Recovery problems requires an exponential time to perform. Intuitively,
this is because the influence in a network can spread via exponential number of differ-
ent paths and thus even computing the value of influence of one node on another is an
exponential-time task [73].

Theorem 3. Both Global and Individual Influence Recovery problems are NP-hard under
the Independent Cascade model.

Proof. The main idea of the NP-hardness proof is as follows. We will show a reduction
from the NP-complete Set Cover problem. We built a network that reflects the structure
of a given Set Cover problem instance and use it as an input for the Influence Recovery
problem with the Independent Cascade model. We allow the addition of edges that cor-
responds to choosing sets in the Set Cover problem instance. Finally, we show that the
optimal solution of the Influence Recovery problem corresponds to the solution of the
given instance of the Set Cover problem.

We show a reduction from the NP-complete Set Cover problem, as defined in Sec-
tion 2.3.3. To remind the reader, U = {u1, . . . , ul} denotes the universe, S = {S1, . . . , Sm}
denotes the set of subsets of the universe, and the goal is to determine whether there exist
k elements of S the union of which equals U .

To this end, let us create a network G as illustrated in figures 3.6 and 3.7. In more
detail, we start by creating one node for every Sj ∈ S, one node for every ui ∈ U , and
one additional node v†. After that, for every Sj ∈ S and every ui ∈ Sj, we add the edge

29

(Sj, ui) (either directed or undirected). In the directed case we additionally add an edge
(ui, v†) for every ui ∈ U to ensure strong connectivity.

𝑣†

𝑆1 …

…

𝑆2 𝑆𝑚

𝑢1 𝑢𝑙𝑢2 𝑢3

Figure 3.6: Undirected network used to re-
duce the Set Cover problem to the Indepen-
dent Cascade Influence Recovery problem.
To solve both problems, we consider adding
(some of) the dashed (green) edges.

𝑣†

𝑆1 …

…

𝑆2 𝑆𝑚

𝑢1 𝑢𝑙𝑢2 𝑢3

Figure 3.7: A directed network used to re-
duce the Set Cover problem to the Influence
Recovery problem. To solve both problems,
we consider adding (some of) the dashed
(green) edges.

Consider the Influence Recovery problem in G under the Independent Cascade model,
where:

• R̂ = ∅;

• Â = {(v†, S1), . . . , (v†, Sm)};

• p : V × V → [0, 1] such that ∀Sj∈S p(v†, Sj) = 1 and ∀Sj∈S∀ui∈Sj p(Sj, ui) = 1, and
p(v, w) = 0 for every other pair of nodes;

• for Individual Influence Recovery, ∀ui∈Uφ(ui) = 1 and φ(v) = 0 for every other
node;

• for Global Influence Recovery, Φ = k + l.

The goal is then to identify the smallest subset of edges to be added to the network,
A ⊆ {(v†, S1), . . . , (v†, Sm)}, such that either inf(V,E∪A)(v†) ­ Φ in the global variant of
the problem, or ∀v∈V inf(V,E∪A)(v†, v) ­ φ(v) in the individual variant of the problem.

Recall that the influence of v† is measured by setting the seed set as {v†} and calcu-
lating the probability that other nodes get activated. Also recall that under the Indepen-
dent Cascade model an active node, v, activates any of its successors, w, with probability
p(v, w). Importantly, with the p function defined as above, adding an edge (v†, Sj) for
some Si ∈ S makes the influence of v† on every ui ∈ Sj equal to 1. Furthermore, the
above definitions of Φ and φ imply that our goal (in both the individual and the global
variants of the problem) is achieved if and only if the influence of v† on every node ui ∈ U

30

equals 1. Consequently, our goal is achieved if and only if we add to G a set of edges,
A ⊆ {(v†, S1), . . . , (v†, Sm)}, such that:⋃

(v†,Sj)∈A
Sj = U.

Since we are interested in finding the smallest such subset, a solution to the above instance
of the Influence Recovery problem gives us a solution to the Set Cover problem.

Having proven NP-hardness of the Influence Recovery problem under the Independent
Cascade model, we now move to the Linear Threshold model.

Interestingly, in case of directed networks, we use the exactly same network as in the
proof for Independent Cascade influence model. However, in case of undirected networks
we have to modify the network structure. This is because for the Independent Cascade
model we are able to prevent “backward” activation of nodes Sj as a result of the acti-
vation of nodes ui by setting the value of p(Sj, ui) to 0. In case of the Linear Threshold
model we have to use a “gadget” (consisting of nodes Ti and si,j) in order to achieve the
same result.

Theorem 4. Both Global and Individual Influence Recovery problems are NP-hard under
the Linear Threshold model.

Proof. The main idea of the NP-hardness proof is as follows. We will show a reduction
from the NP-complete Set Cover problem. We built a network that reflects the structure
of a given Set Cover problem instance and use it as an input for the Influence Recovery
problem for the Linear Threshold model. We allow the addition of edges that corresponds
to choosing sets in the Set Cover problem instance. Finally, we show that the optimal so-
lution of the Influence Recovery problem corresponds to the solution of the given instance
of the Set Cover problem.

We show a reduction from the NP-complete Set Cover problem, as defined in Sec-
tion 2.3.3. To remind the reader, U = {u1, . . . , ul} denotes the universe, S = {S1, . . . , Sm}
denotes the set of subsets of the universe, and the goal is to determine whether there exist
k elements of S the union of which equals U .

For the directed case, we create a network G as illustrated earlier in Figure 3.7 and
described in the proof of Theorem 3. As for the undirected case, we create G as illustrated
in Figure 3.8. In more detail, for every Sj ∈ S, we create two nodes, namely Sj and Tj, as
well as l additional nodes, namely sj,1, . . . , sj,l. We also create one node for every ui ∈ U ,
and finally add the source node, v†. As for the edges, for every Sj ∈ S and every ui ∈ Sj,
we add the edge (Tj, ui). Furthermore, for every node sj,i, we add the edges (Sj, sj,i) and
(sj,i, Tj). The purpose of adding nodes Ti and si,j is to avoid “backward” activation of
nodes Sj (i.e., activation of Si by nodes in U), as would happen in the network shown in
Figure 3.6. Note that if there exists a node Sj connected to all nodes in U , it can still be
”backward” activated, but only in case when we restore influence on all nodes in U .

Now consider the Influence Recovery problem in G under the Linear Threshold model,
where:

• R̂ = ∅;

• Â = {(v†, S1), . . . , (v†, Sm)};

31

𝑇1 …

…

𝑇2 𝑇𝑚

𝑢1 𝑢𝑙𝑢2 𝑢3

𝑆1
…

𝑆2 𝑆𝑚

…
𝑠1,1 𝑠1,𝑙 …

𝑠2,1 𝑠2,𝑙 …𝑠𝑚,1 𝑠𝑚,𝑙

𝑣†

Figure 3.8: Undirected network used to reduce the Set Cover problem to Influence Re-
covery problem under the Linear Threshold model. To solve both problems, we consider
adding (some of) the green dashed edges.

• tv = l for every node v ∈ {T1, . . . , Tm} and tv = 1 for every other node;

• for Individual Influence Recovery, ∀ui∈Uφ(ui) = 1 and φ(v) = 0 for every other
node;

• for Global Influence Recovery, Φ = k+ l for the directed case, and Φ = k(l+ 2) + l
for the undirected case.

The goal is then to identify the smallest subset of edges to be added to the network,
A ⊆ {(v†, S1), . . . , (v†, Sm)}, such that either inf(V,E∪A)(v†) ­ Φ in the global variant of
the problem, or ∀v∈V inf(V,E∪A)(v†, v) ­ φ(v) in the individual variant of the problem.

Recall that the influence of v† is measured by setting the seed set as {v†} and calcu-
lating the probability that other nodes get activated. Also recall that under the Linear
Threshold model a node, v, gets activated if the number of its active predecessors ex-
ceeds tv. Note that, with tv defined as above, adding an edge (v†, Sj) in the undirected
case leads to the activation of nodes si,j and Ti, which in turn leads to the activation
of every ui ∈ Sj (see Figure 3.8). Likewise, in the directed case, adding (v†, Sj) leads
to the activation of every ui ∈ Sj (see Figure 3.7). To put it differently, when adding
(v†, Sj), the influence of v† on every ui ∈ Sj equals 1. Importantly, the above definitions
of Φ and φ imply that our goal (in both the individual and the global variants of the
problem) is achieved if and only if the influence of v† on every node ui ∈ U equals 1.
Those observations imply that our goal is achieved if and only if we add to G a set of

32

Algorithm 1 The ROAM heuristic
Input: A network G = (V,E), budget b ∈ N, source node v† ∈ V
Output: Sets of edges to be added A∗ and to be removed R∗ from the network

Choose v∗ ∈ N(v†)
R∗ = {(v†, v∗)}
A∗ = ∅
for i = 1, . . . , b− 1 do

Choose v ∈ N(v†) \N(v∗)
A∗ = A∗ ∪ {(v, v∗)}

edges, A ⊆ {(v†, S1), . . . , (v†, Sm)}, such that:⋃
(v†,Sj)∈A

Sj = U.

Since we are interested in finding the smallest such subset, a solution to the above instance
of the Influence Recovery problem gives us a solution to the Set Cover problem.

Having proven the NP-hardness of the Influence Recovery problem for the Linear
Threshold model, we now move to designing and testing a simple heuristic solution.

3.5 Heuristic Solution

Knowing that for most of our problems it is NP-hard to compute the optimal solution, we
now describe a simple polynomial time heuristic that seems to perform well in practice.

3.5.1 The ROAM heuristic

Typically, one has very limited knowledge of the social ties beyond his or her immediate
friends, and maybe friends of friends. However, even if one was able to somehow acquire
information about the entire network structure, our theoretical results from the previous
section suggest that it is extremely unlikely for such an individual to have the necessary
computational power to optimally disguise himself or herself.

Against this background, we investigate the possibility of disguising one’s centrality
adequately (albeit not optimally) while restricting one’s attention to only his or her imme-
diate neighbourhood, and without requiring massive computational power nor expertise
in sophisticated optimization techniques. With this in mind, we propose a heuristic whose
instructions are simple enough for an average user of social-networking services to under-
stand and use, regardless of their technical background. The pseudocode of our heuristic,
called ROAM—Remove One, Add Many—is presented as Algorithm 1. An illustration of
how it works is presented in Figure 3.9. Specifics of choosing specific nodes in the ROAM
heuristic are described in the next subsection.

Let us now comment on this heuristic, starting with the construction of the set R∗, i.e.,
with the removal of a connection between v† and v∗. As far as decreasing the centrality of
v† is concerned, this step can only be beneficial. More specifically, cutting off v† from one of
its neighbours is the only way to reduce the degree of v†. Likewise, this operation can only

33

Original network
Mohamed Atta
1st in Degree centrality ranking
1st in Closeness centrality ranking
1st in Betweenness centrality ranking
IC influence = 2.55
LT influence = 6.44

6

After two executions of ROAM
heuristic
Mohamed Atta
5th in Degree centrality ranking
4th in Closeness centrality ranking
11th in Betweenness centrality ranking
IC influence = 2.21
LT influence = 6.90

6

After one execution of ROAM
heuristic
Mohamed Atta
3rd in Degree centrality ranking
2nd in Closeness centrality ranking
5th in Betweenness centrality ranking
IC influence = 2.39
LT influence = 6.72

6

9

8

7

10

30

32363326

34

35

24

11

29

23

1222

1815

2827

12

14

13

19

17

3

4

20

31

5

9

8

7

10

30

32363326

34

35

11

29

23

1222

1815

2827

12

14

13

19

17

3

4

20

31

5

9

8

7

10

30

32363326

34

35

24

11

29

23

1222

1815

2827

12

14

13

19

17

3

4

20

31

5

6 66

25 2525

16 1616

21 2121

24

Figure 3.9: Executing the ROAM heuristic with budget 3 twice on the 9/11 terrorist
network to hide Mohamed Atta—one of the ringleaders of the attack [80]. The dotted
red edge is the one to be to removed by the algorithm, and the dashed green edges are
the ones to be added.

decrease the closeness of v† (this happens when all shortest paths between v† and some
other node run through the removed link), and can only decrease the betweenness of v†

(this happens when some of the shortest paths going through v† contain the removed link).
However, as far as the influence of v† is concerned, this operation may be detrimental, as
it deprives v† of its direct influence over v∗.

Moving on to the construction of A∗, this step is primarily designed to compensate
for any influence that v† may have lost during the previous step. Specifically, it creates
new, indirect connections between v† and v∗ (that was previously a neighbour of v†) to
compensate for the direct one that was removed earlier. As far as the centrality of v† is
concerned, while this step does not affect the degree of v†, it increases the degrees of some
of its neighbours, which in turn contributes towards concealing the relative importance
of v† within the network. Furthermore, the addition of an edge, (v, v∗)—where v is some
neighbour of v†—cannot increase the closeness centrality of v† beyond its state before
running the ROAM heuristic altogether. This is because any path containing (v, v∗) and
(v†, v) is certainly longer than any original path in which (v, v∗) and (v†, v) were replaced
with (v∗, v†). Likewise, the addition of this link cannot increase the betweenness centrality
of v† beyond its original state, because replacing a direct connection between v† and v∗

with an indirect one cannot increase the percentage of shortest paths going through v†.
We now specify how ROAM should be modified to work on directed networks. First

of all, v∗ is not chosen among the neighbours of v†, but rather among the successors

34

of v†. This is mainly because removing a successor of v† reduces its closeness centrality,
whereas removing a predecessor has no such impact. As for the b−1 neighbours of v† to be
connected to v∗, they are chosen among the predecessors of v†; for each such predecessor,
v, we add the edge (v, v∗). This is mainly because it could potentially rebuild the influence
of v† on v∗, which was hampered by the removal of the edge (v†, v∗). Furthermore, for
every shortest path that contains the edge (v†, v), the addition of (v, v∗) could create a
new alternative shortest path that does not pass through v†, thus further reducing the
betweenness centrality of v†.

3.5.2 Configuring the ROAM Heuristic

The ROAM heuristic involves choosing v∗ (the neighbour of v† whom the heuristic will
disconnect from v†), and choosing the b − 1 neighbours of v† whom the heuristic will
connect to v∗. We conducted a number of experiments to determine whether it is more
beneficial to choose v∗ as the neighbour of v† with the least connections or the most
connections. Likewise, we wanted to determine whether it is more beneficial to choose
the b − 1 neighbours of v† (who will be connected to v∗) as the ones with the least
connections or the most connections.

In particular, Figure 3.10 compares the different settings given 50 randomly generated
scale-free networks consisting of 100 nodes each, where 3 edges are added with each step
of the generation process (for more details, see [10]). We chose scale-free networks as they
resemble real-life networks in many way, e.g., in terms of degree distribution. As for the
source node, it is chosen to be the one with the lowest sum of positions in centrality
rankings (ties are broken uniformly at random). As for the Independent Cascade model,
we set the activation probability to be p(v, w) = 0.15 for every pair of nodes, v, w ∈ V . As
for the Linear Threshold model, for every node, v ∈ V , the threshold value, tv, is sampled
uniformly at random from the set {0, . . . , |P (v)|}. For both models, the influence values
are approximated using the Monte-Carlo method. In the figure, we write ROAM-x-y(b),
where x can either be “max” or “min” (indicating that v∗ is the neighbour with the
highest degree or the lowest connections, respectively) and y can either be “max” or
“min” (indicating that the b − 1 neighbours are chosen to be the ones with the highest
degree or the lowest degree, respectively), whereas b represents the budget (which is set
to 3 in this experiment). Since the results are averaged over 50 random networks, the
coloured areas in the figure represent the 95% confidence intervals. For each network,
the ROAM heuristic is executed multiple, consecutive times; the x-axis in each subfigure
represents the number of executions.

As can be seen, while there is no setting that dominates the others, the best overall
performance seems to be achieved by ROAM-max-min(3). Based on this, in all subsequent
experiments on ROAM, we choose v∗ as the neighbour of v† with the highest degree, and
we connect v∗ to the b− 1 neighbours of v† with the lowest degree.

3.5.3 Experimental Results

We now describe experimental results of using ROAM heuristic to hide in the network.
The setting for each of our experiments consists of a network, a budget and a source
node. More specifically, we experiment with a budget of 2, 3 and 4. The source node is

35

.
Degree Ranking Closeness Ranking Betweenness Ranking

1

2

3

4

5
0 2 4 6 8 10

No. of executions

R
an

ki
ng

2

4

6

8

10

12

0 2 4 6 8 10
No. of executions

R
an

ki
ng

1

2

3

4

5

6

7
0 2 4 6 8 10

No. of executions

R
an

ki
ng

IC Influence LT Influence

0.75

0.80

0.85

0.90

0.95

1.00

0 2 4 6 8 10
No. of executions

V
al

ue

0.85

0.90

0.95

1.00

1.05

1.10

0 2 4 6 8 10
No. of executions

V
al

ue

ROAM-max-max(3)

ROAM-max-min(3)

ROAM-min-max(3)

ROAM-min-min(3)

Figure 3.10: Comparing different settings of ROAM on 50 randomly generated scale-
free network consisting of 100 nodes, with 3 edges added in each step of the generation
process. For each such network, ROAM is executed multiple, consecutive times (the x-
axis represents the number of executions). The subfigures show the source node’s ranking
(according to different centrality measures), and the relative change in its influence value
(according to different influence models).

assumed to be the one with the lowest sum of positions in the centrality rankings (ties
are broken uniformly at random). Whenever the Independent Cascade model is used,
activation probability of 0.15 is assumed on each link. On the other hand, whenever the
Linear Threshold model is used, the uniform distribution of thresholds is assumed. For
both models, the influence values are approximated using the Monte-Carlo method. In
each of these experiment, the ROAM heuristic is executed multiple, consecutive times.
All datasets are described in Section 2.2.

Figures 3.11 and 3.12 shows example results of our experiments. The centrality plots
depict the ranking of the source node, whereas the influence plots depict its relative
influence value (compared to the original influence value before executing the heuristic

36

Degree Ranking Closeness Ranking Betweenness Ranking
M

ad
ri

d
bo

m
bi

ng
0

10

20

30

40

0 2 4 6 8
No. of executions

R
an

ki
ng

0

10

20

30

0 2 4 6 8
No. of executions

R
an

ki
ng

0

10

20

30

40

0 2 4 6 8
No. of executions

R
an

ki
ng

Sc
al

eF
re

e(
10

0,
3)

1

2

3

4

5

0 2 4 6 8 10
No. of executions

R
an

ki
ng

2

4

6

8

10

12

0 2 4 6 8 10
No. of executions

R
an

ki
ng

2

4

6

8

0 2 4 6 8 10
No. of executions

R
an

ki
ng

Fa
ce

bo
ok

(m
ed

iu
m

)

5

10

15

0 5 10 15 20
No. of executions

R
an

ki
ng

10

20

30

0 5 10 15 20
No. of executions

R
an

ki
ng

10

15

20

25
0 5 10 15 20

No. of executions

R
an

ki
ng

ROAM(2) ROAM(3) ROAM(4)

Figure 3.11: Consecutive execution of ROAM (the x-axis represents the number of ex-
ecutions). Specifically, given different networks, the subfigures show the source node’s
ranking (according to the centrality measures). Results are shown for ROAM(b), where
b is the budget in each execution.

altogether). As can be seen, the heuristic is effective in decreasing the source node’s
ranking, and this effectiveness increases with the budget spent on rewiring the network.
As for influence, the performance of the heuristic varies depending on the network, the
influence model, and the budget. Overall, the greater the budget, the greater the influence,
e.g., a budget of 4 manages to maintain (or even increase) the influence in 4 out of 6 cases.

All experimental results for the ROAM heuristic are presented in Appendix A in
Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9,A.10, A.11 and A.12.

37

IC Influence LT Influence

M
ad

ri
d

bo
m

bi
ng

0.5

1.0

1.5

0 2 4 6 8
No. of executions

V
al

ue

0

5

10

15

20

0 2 4 6 8
No. of executions

V
al

ue

Sc
al

eF
re

e(
10

0,
3)

0.7

0.8

0.9

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

0.9

1.0

1.1

1.2

1.3

0 2 4 6 8 10
No. of executions

V
al

ue

Fa
ce

bo
ok

(m
ed

iu
m

)

137

138

139

140

0 5 10 15 20
No. of executions

V
al

ue

28

30

32

34

36

38

0 5 10 15 20
No. of executions

V
al

ue

ROAM(2) ROAM(3) ROAM(4)

Figure 3.12: Consecutive execution of ROAM (the x-axis represents the number of exe-
cutions). Specifically, given different networks, the subfigures show the relative change in
the source node’s influence value (according to the influence models). Results are shown
for ROAM(b), where b is the budget in each execution.

3.6 Concluding Remarks

Our goal was to understand the practical limits of disguising individuals, i.e., the ability
to increase the likelihood of being overlooked by various centrality measures. Our main
result is that, despite the hardness of finding optimal solutions, disguising oneself can be

38

surprisingly easy in practice, and can be achieved with the use of simple heuristics that
can be easily implemented even by lay people.

On one hand, our findings contribute towards charting the limits of protecting privacy
in social networks. On the other hand, they expose potentially serious limitations of using
generic social network analysis tools in security applications. The fact that such tools can
be easily misled underlines the need for developing specialized tools that account for the
nature of links and nodes in the network, and not just its topology.

As a first step in the study of how to strategically evade node-centrality analysis,
we focused on a basic model, designed to shed light on the workings of some of the
most fundamental social network analysis tools. Nevertheless, our model has a number
of limitations which will be discussed next.

First, when identifying key nodes, the seeker is assumed to use three simple yet fun-
damental measures of centrality—degree, closeness, and betweenness—as these measures
can be used even with large social networks. Given this assumption, the evader can focus
on reducing her centrality without compromising her influence, knowing that the seeker
is unable to use influence measures as means of identifying leaders. This assumption is
based on the fact that it is intractable to measure influence according to the Independent
Cascade or the Linear Threshold models, especially when the network is large. Indeed,
even industrial social network analysis software packages do not typically allow for effi-
cient and accurate approximation of influence in large networks [64]. However, in cases
where the seeker has extensive processing power, and is handling small networks, then
the leader can be identified by ranking the nodes not based on their centrality scores but
rather based on their influence. For such cases, our study can serve as a step towards
understanding the trade-off between the two measures of node importance, i.e., central-
ity measures and influence measures. In fact, in our analysis, we divided the process of
disguising the source node into two phases: the centrality minimization phase, and the
influence recovery phase. As such, if the source node suspects that the seeker will also
use influence as a measure of centrality, then the source node can focus solely on the
centrality minimization phase.1

Second, our model assumes that the evader’s actions are automatically successful.
While this kind of assumption is common when considering theoretical settings, real-life
applicability often involves probability of a failure of an action. An interesting possible
direction of future work is taking this possibility into account both in theoretical analysis,
as well as in designing the heuristic solutions. Such algorithms with built-in fail-safes in
case of an action failure would be more suitable to use in real-life noisy settings, where
the possibility of adding and removing edges from the network might depend on arbitrary
decisions of network members.

Third, although our heuristic algorithm—ROAM—appears to be effective in practice,
it does not provide any worst-case guarantees on the solution quality. This is because our
primary goal was to develop algorithms that are scalable and applicable by lay individuals
who want to protect their privacy; such individuals typically do not know the topology
of the entire network, nor do they have the ability the rewire links between two complete
strangers. Undoubtedly, however, scalability and applicability are achieved at the expense

1Such a study would probably be interesting only if there are additional constraints that the source
node wants to satisfy. Otherwise, the source node would be better off removing as many of its neighbours
as possible, leading to an optimal solution where the source node is cut off entirely from the network.

39

of solution quality. As such, there is room to develop more advanced algorithms that
compute near-optimal solutions (although, of course, there is still a limit to what can be
achieved in polynomial time).

Fourth, in our experiments we assume that the evaders do not know the exact social
network analysis tool that the seeker is using. As such, we focus on developing a heuris-
tic algorithm that performs reasonably well on a wide range of social network analysis
tools, taken from the rich repository of node-centrality tools. Alternatively, one can focus
on developing dedicated algorithms for each centrality-measure. Every such specialized
algorithm would have a narrower scope, but in return would likely outperform the more
generic one that was developed in this dissertation.

To summarize, we believe that our work is an important first step in the study of
the issue of concealing one’s importance in a social network. At the same time, further
research is necessary to better understand the limits of how well the problem can be
solved. Above we mentioned just a few of many possible venues of future work.

40

Chapter 4

Hiding Leaders

In this chapter we discuss the problem of lowering the positions in centrality ranking of
multiple nodes at once, allowing to effectively hide leaders of a network. We formally define
the problem, prove its NP-completeness for three most widely used centrality measures,
and show an algorithm for constructing a network where leaders are well-hidden.

4.1 Introduction

Mapping terrorist networks and analysing their structure is a vitally important part of
counter-terrorism efforts. Not only does it help to understand their operational methods
and the way of thinking, but also it plays a key role in designing and implementing
destabilization strategies [28, 47, 104]. Common approach to devising such strategies
requires identifying individuals that are playing central roles in the organization [45, 46].
Typically used tools in such situations are centrality measures [92, 100, 61]. In the previous
chapter we analysed the problem avoiding centrality-based detection from the perspective
of a single network member. We now intend to expand this analysis for multiple nodes.

Understanding how criminals organize themselves into a network structure is challeng-
ing at various levels [80, 137]: the data may be incomplete, the nature of the relationships
between the criminals may be unclear, and the network may evolve continuously. The
literature on this research problem agrees that criminals in general, and terrorists in par-
ticular, face a trade-off between secrecy and efficiency [105], though the way in which
both factors are modelled differs.

Overall, the literature can be divided into two general categories, which we now briefly
discuss.

In the first category, researchers study known topologies of historical or contem-
porary criminal networks, with the aim to understand why particular structures have
emerged [38, 42, 75]. One of the most comprehensive studies in this category is due to
Kilberg [75], who analysed an extensive dataset of more than 240 terrorist networks, and
provided a classification of those networks based on their structure and functionality.
Furthermore, using regression analysis, the author tried to quantify the degree to which
the shapes of terrorist networks are influenced by such variables as the GDP level of the
target country, the political rights and civil liberties therein, and the inclination to attack
police and military targets in that country.

41

Our study contributes to the second category of the literature, which is more the-
oretical in nature and aims to explain the structural properties of covert networks by
developing explicit models of the terrorists’ preferences and the different choices they
face [43, 66, 91]. With such analyses, certain network topologies typically emerge as the
result of modelling the terrorists as rational decision makers. A notable example of such
a model is that of Lindelauf et al. [91], who consider the trade-off between secrecy and
operational efficiency of a terrorist network, and borrows concepts from both game the-
ory and graph theory to identify more fitting topologies. Arguably, it is less efficient if a
message has to be passed many times from one person to another (i.e., the shortest path
from the sender to the receiver is relatively long). Based on this, Lindelauf et al. defined
efficiency as the reciprocal of the total distance of the graph (i.e., the sum of shortest
distances between any two nodes in the network). Secrecy, in turn, is defined for each
node and is proportional to the fraction of the network that remains unexposed when
this node is detected. The secrecy of the network is the sum of the secrecy scores over all
nodes.

In this chapter, we propose a theoretical model to study the secrecy-efficiency trade-
off that differs from previous ones in a number of ways. Firstly, inspired by studies of
real-life covert networks [30, 95], we take a leader-centric approach, i.e., we focus on the
role played in a terrorist network by its leadership. In more detail, we investigate how the
topology of the network can be deliberately designed to keep the leaders identities hidden.
In this context, while the previous literature on identifying leaders of terrorist networks
typically assumed that such leaders are not aware of the techniques and methods used
by law-enforcement agencies, we assume that this is not the case, i.e., in our model the
terrorist leaders strategically shape their network to protect themselves from detection by
the centrality measures. In fact, recent media reports and academic studies of criminal
and terrorist organizations suggest that members of such organizations are becoming
increasingly tech-savvy [109, 68]. Hence, their obliviousness with respect to the available
social network analysis techniques should not be taken for granted.

As already argued, secrecy is not the only objective that the leaders of a terrorist
network may have. Indeed, if they were concerned only with hiding themselves, they
would simply cut most (if not all) of their connections in the network. This, however,
would clearly impair the leaders’ efficiency. In our model, the efficiency of the leaders
is defined as their influence over the network. In other words, the leaders in our model
face the trade off between hiding from centrality measures, and influencing the network
members.

In the first part of the chapter we focus on the computational aspects of modifying
an existing network so as to shield a group of leaders from centrality analysis. In more
detail, we analyse the hardness of rewiring the network so that the ranking of all leaders
(based on one of the three main centrality measures) drops below a certain threshold.
At first glance, this problem may appear to be easy at least for the degree centrality,
which is mathematically uninvolved. Surprisingly, however, we find that this is not the
case. In comparison with the previous chapter, we now consider a group of nodes that
wish to be hidden (while in Chapter 3 we consider only a single node), and we are
interested in relative position in centrality ranking (while in Chapter 3 we analysed the
complexity of lowering absolute centrality value), and these differences in the setting lead
to computational hardness. Our results are in line with the literature on modifying a

42

network to increase centrality [36].
Given the hardness of modifying an existing network, we turn out attention to a

different question, which is how a covert network can be built from scratch so that the
leaders are hidden and, at the same time, have a reasonable influence over the network
members. Here the main idea is for the leaders to surround themselves with an “inner
circle” of trustees, called “captains”, whose role is to conceal the leaders, and to pass on
their communicates to the rest of the network. We identify one such network structure,
and prove that every captain is guaranteed to be ranked higher than any of the leaders
(according to the three standard centrality measures). In fact, “inner circles” have been
identified in various real-life terrorist networks, e.g., in Al-Quaeda [11] and IRA [139].
While we do not have access to data that confirms that those real-life “inner circles” have
similar structure to the ones obtained in this dissertation, we hope that our results shed
more light on why such circles may exist in covert networks. In this context, charting the
topology of covert networks became one of the key research directions.

The remainder of this chapter is organized as follows. In Section 4.2 we present the
definition of the main problem considered in this chapter, i.e., hiding a group of leaders.
In Section 4.3 we prove this problem to be NP-complete for three most widely used
centrality measures. In Section 4.4 we present the way of building a new communication
structure that keeps leaders well-hidden and influential. In Section 4.5 we summarize and
discuss our findings. Note that many concepts we use, such as centrality measures and
influence models, are defined in the previous chapter, in Section 3.2.

4.2 Problem Definition

We assume that the covert network is composed of two types of agents: the leaders and
the followers. Furthermore, we assume that the leaders are aware that hostile agencies
may use centrality analysis to identify them. Thus, the leaders would like to strategically
modify the existing network so that their centrality rankings becomes lower than a certain
predefined threshold d ∈ N that we refer to as safety margin. To achieve this objective,
no more than b ∈ N modifications can be made to the network (b will be referred to as
the budget).

Following the arguments in Section 3.3, we also introduce a set of edges allowed to be
added Â and a set of edges allowed to be removed R̂. These sets may be used to preserve
the critical communication channels within the organisation or, e.g., to avoid connecting
two individuals belonging to conflicted parties within the network.

Formally, we define Hiding Leaders as follows:

Definition 4 (Hiding Leaders). This problem is defined by a tuple (G,L, b, c, d, Â, R̂),
where G = (V,E) ∈ G is a network, L ⊂ V is a set of leaders to be hidden, b ∈ N is a
budget specifying the maximum number of edges that can be added or removed from the
network, c : G× V → R is a centrality measure, d ∈ N is a chosen safety margin, Â ⊆ Ē
is a set of edges allowed to be added, and R̂ ⊆ E is a set of edges allowed to be removed.
Then, if we denote by F = V \L the set of “followers”, the goal is to identify a set of edges
to be added to the network, A∗ ⊆ Â, and a set of edges to be removed from the network,
R∗ ⊆ R̂, such that |A∗| + |R∗| ¬ b and the resulting network G′ = (V, (E ∪ A∗) \ R∗)
contains at least d followers that each has a centrality score higher than that of any leader,

43

i.e.:
∃F ′⊆F (|F ′| ­ d ∧ ∀f∈F ′∀l∈Lc(G′, f) > c(G′, l))

In the following section we perform complexity analysis of the Hiding Leaders problem
for degree, closeness and betweenness centralities.

4.3 Complexity Analysis

Intuitively, the Hiding Leaders problem should be easy to solve for the degree centrality
measure. Indeed, adding an edge between any two disconnected followers increases their
degree centrality with respect to all the leaders. However, we prove below that the problem
is in fact NP-complete for the degree centrality measure.

Theorem 5. The problem of Hiding Leaders is NP-complete given the degree centrality
measure.

Proof. The problem is trivially in NP, since after the addition of a given set of edges A∗

and the removal of a given set of edges R∗ it is possible to compute the degree centrality
for all nodes in polynomial time.

We now prove that the problem is NP-hard. To this end, we give a reduction from
the NP-complete problem of Finding k-Clique, as defined in Section 2.3.3. To remind the
reader, the goal is to determine whether there exist k nodes in G that form a clique.

Given an instance of the problem of Finding k-Clique, defined by some k ∈ N and a
network G = (V,E), let us construct a network, H = (V ′, E ′), as follows:

• The set of nodes: For every node, vi ∈ V , we create a single node, vi, as well as
|NG(vi)| other nodes, denoted by X = {xi,1, . . . , xi,|NG(vi)|}. Additionally, we create
one node called y, as well as n+ k − 1 other nodes, namely L′ = l1, . . . , ln+k−1.

• The set of edges: We create an edge between two nodes vi, vj ∈ V if and only if
this edge was not present in G, i.e., (vi, vj) ∈ E ′ ⇐⇒ (vi, vj) /∈ E. Additionally,
for every vi we create an edge (vi, y) as well as an edge (vi, xi,j) for every xi,j. We
also create an edge (li, lj) between every pair of nodes li, lj ∈ L′, except for the edge
(l1, l2). Finally, we create two additional edges, (l1, y) and (l2, y).

An example of such a network H is illustrated in Figure 4.1.
Now, consider instance (H,L, b, c, d, Â, R̂) of the problem of Hiding Leaders, where:

• H = (V ′, E ′) is the network we just constructed;

• L = V ′ \ V ;

• b = k(k−1)
2 ;

• c is the degree centrality measure;

• d = k;

• Â = E;

44

𝑣3

𝑣4

𝑣1

𝑣2

𝐺
𝑣3

𝑣4

𝑣1

𝑣2

𝑦

𝑥3,1

𝑥2,1
𝑥4,1

𝑥1,1 𝑥1,2 𝑥1,3

𝑥2,2

𝑥3,2

𝑙2
𝑙3

𝑙4

𝑙5𝑙6

𝑙1

𝐻

Figure 4.1: An illustration of the network used in the NP-completeness proof of the
problem of Hiding Leaders given the degree centrality.

• R̂ = ∅.

From the definition of the problem of Hiding Leaders, we know that the edges to
be added to H must be chosen from E, i.e., edges from the network in the Finding k-
Clique problem. Out of those edges, we need to choose subset, A∗ ⊆ E, as a solution to
the Hiding Leaders problem. In what follows, we will show that a solution to the above
instance of the Hiding Leaders in H corresponds to a solution to the problem of Finding
k-Clique in G.

First, note that each of the k nodes with the highest degree centrality in H must be
a member of L′. This is because there are more than k nodes in L′, each of which has a
degree of n + k − 2, while the degree of every node in V ′ \ L′ is smaller than n + k − 2.
Thus, in order for A∗ to be a solution to the problem of Hiding Leaders, the addition of
A∗ to H must increase the degree of at least k nodes in V such that each of them has a
degree of at least n + k − 1 (note that the addition of A∗ only increases the degrees of
nodes in V , as we already established that A∗ ⊆ E). Now since in H the degree of every
node in V equals n (because of the way H is created), then in order to increase the degree
of k such nodes to n+ k − 1, each of them must be an end of at least k − 1 edges in A∗.
But since the budget in our problem instance is k(k−1)

2 , then the only possible choice of
A∗ is the one that increases the degree of exactly k nodes in V by exactly k − 1. If such
a choice of A∗ is available, then surely those k nodes would form a clique in G, since all
k(k−1)

2 edges in A∗ are taken from G.

Having proven the NP-completeness of the problem given the degree centrality, we
next prove its NP-completeness given the closeness centrality.

Both proof for the closeness centrality and the following proof for the betweenness
centrality are based on a similar idea. We create a network with two nodes pretending to
the first place in centrality ranking, namely nodes t and z. Node z is one of the leaders,
who we intend to hide. However, in the initial state of the network it is also the node
with the highest centrality. We show that increasing the centrality of t—in order for it to

45

achieve higher centrality than z—requires adding the edges corresponding to an optimal
solution of the underlying Set Cover problem instance.

Theorem 6. The problem of Hiding Leaders is NP-complete given the closeness centrality
measure.

Proof. The problem is trivially in NP, since after the addition of a given A∗, and the
removal of a given R∗, it is possible to compute the closeness centrality for all nodes in
polynomial time.

Next, we prove that the problem is NP-hard. To this end, we propose a reduction from
the NP-complete 3-Set Cover problem, as defined in Setion 2.3.3. To remind the reader,
U = {u1, . . . , ul} denotes the universe, S = {S1, . . . , Sm} denotes the set of subsets of the
universe, where for every Si we have that |Si| = 3, and the goal is to determine whether
there exist k elements of S the union of which equals U .

Given an instance of the 3-Set Cover problem, let us construct a network G as follows:

• The set of nodes: For every Si ∈ S, we create a single node denoted by Si, and
for every ui ∈ U , we create two nodes denoted by ui and wi. We denote the set of
all Si nodes by S, the set of all ui nodes by U , and the set of all wi nodes by W . In
addition, we create l+m+ 1 nodes denoted by X = {x1, . . . , xl+m+1}, and m nodes
denoted by Y = {y1, . . . , ym}. Lastly, we create two additional nodes, denoted by t
and z.

• The set of edges: First, we create the edge (t, z). Then, for every node xi we
create an edge (xi, t), for every node yi we create an edge (yi, z), for every node wi
we create the edges (wi, z) and (wi, ui), and every node Si we create an edge (Si, uj)
for every uj ∈ Si. After that, we create k edges, (z, S1), . . . , (z, Sk), i.e., we connect
k initial elements of S to z. Finally, we create edges such that the nodes in S form
a clique, and those in U also form a clique. That is, we create an edge (ui, uj) for
every ui, uj ∈ U and an edge (Si, Sj) for every Si, Sj ∈ S.

An example of the resulting network, G, is illustrated in Figure 4.2.
Now, consider the following instance of the problem of Hiding Leaders, (G,L, b, c, d, Â, R̂),

where:

• G is the network we just constructed;

• L = {z} ∪ U ∪W ∪X ∪ Y ;

• b = k, where k is the parameter of the 3-Set Cover problem (where the goal is to
determine whether there exist k elements of S the union of which equals U);

• c is the closeness centrality measure, i.e., c(G, v) = n−1∑
w∈V \{v} d(v,w) ;

• d = 1;

• Â = {(t, Si) : Si ∈ S};

• R̂ = ∅.

46

𝑢1 𝑢2 𝑢𝑙
...

𝑆1 𝑆𝑚
...

𝑤1 𝑤2 𝑤𝑙
...

𝑧𝑡 ...
𝑦1

𝑦𝑚

...𝑥1

𝑥𝑚+𝑙+1

Figure 4.2: An illustration of the network used in the NP-completeness proof of the
problem of Hiding Leaders given the closeness centrality.

From the definition of the problem of Hiding Leaders, we see that the only edges
that can be added to the graph are the edges between t and the members of S, i.e.,
A∗ ⊆ Â, where Â = {(t, S1), . . . , (t, Sm)}. Notice that any such choice of A∗ corresponds
to selecting a subset of |A∗| elements of S in the 3-Set Cover problem. In what follows,
we will show that a solution to the above instance of Hiding Leaders corresponds to a
solution to the 3-Set Cover problem.

First, we show that for every v ∈ V \{t, z} and every A∗ ⊆ Â we either have c(G′, v) <
c(G′, t) or c(G′, v) < c(G′, z), where G′ = (V,E ∪ A∗). To this end, let D(G′, v) denote
the sum of distances from v to all other nodes, i.e., D(G′, v) =

∑
w∈V \{v} d(v, w). Note

that D(G′, v) = n−1
c(G′,v) . We show that the following holds:

∀v∈V \{t,z}∀A∗⊆Â(D(G′, v) > D(G′, t)) ∨ (D(G′, v) > D(G′, z))

Let dt denote
∑
ui∈U d(t, ui) +

∑
Si∈S d(t, Si). Table 4.1 presents computation of dis-

tances between nodes in G′. In what follows, we compute D(G′, v) for different types of
node v. Given these values we have that:

• D(G′, z) = 5l + 5m− k + 3;

• D(G′, t) = 3l + 3m+ 2 + dt;

• D(G′, xi) = 6l + 6m+ 3 + dt > D(G′, t);

• D(G′, yi) = 8l + 8m− k + 4 > D(G′, z);

• D(G′, wi) ­ 7l + 7m+ 3 > D(G′, z) because we have d(wi, Sj) ­ 2;

• D(G′, ui) ­ 6l + 7m+ 5 > D(G′, z) because we have d(ui, t) ­ 2 and d(ui, Sj) ­ 1;

• D(G′, Si) ­ 6l + 5m > D(G′, z); because we have d(Si, z) ­ 1 and d(Si, t) ­ 1.

47

v
d(v

,z)
d(v

,t) ∑
x
i ∈
X
d(v

,x
i) ∑

y
i ∈
Y
d(v

,y
i) ∑

w
i ∈
W
d(v

,w
i) ∑

u
i ∈
U
d(v

,u
i)

∑
S
i ∈
S
d(v

,S
i)

D
(G
′,v)

z
0

1
2(m

+
l+

1)
m

l
2l

k
+

2(m
−
k)

5l+
5m
−
k

+
3

t
1

0
m

+
l+

1
2m

2l
∑
u
i ∈
U
d(t,u

i)
∑
S
i ∈
S
d(t,S

i)
3l+

3m
+

2
+
d
t

x
i

2
1

2m
+

2l
3m

3l
l+ ∑

u
i ∈
U
d(t,u

i)
m

+ ∑
S
i ∈
S
d(t,S

i)
6l+

6m
+

3
+
d
t

y
i

1
2

3(m
+
l+

1)
2(m
−

1)
2l

3l
2k

+
3(m
−
k)

8l+
8m
−
k

+
4

w
i

1
2

3(m
+
l+

1)
2m

2(l−
1)

1
+

2(l−
1)

­
2m

­
7l+

7m
+

3
u
i

2
­

2
3(m

+
l+

1)
3m

1
+

2(l−
1)

l−
1

­
m

­
6l+

7m
+

5
S
i
­

1
­

1
2(m

+
l+

1)
2m

2l
3

+
2(l−

3)
m
−

1
­

6l+
5m

T
able

4.1:
D

istances
betw

een
nodes

in
the

graph
constructed

for
the

closeness
centrality

proof.

48

Therefore, either t or z has the highest closeness centrality. Since z ∈ L and t ∈ F ,
then A∗ ⊆ Â is a solution to the problem of problem of Hiding Leaders if and only if
D(G′, t) < D(G′, z). This is the case when:

dt < 2l + 2m− k + 1.

Let UA = {ui ∈ U : ∃Sj∈Sui ∈ Sj ∧ (t, Sj) ∈ A∗}. We have that dt = |A∗| + 2(m −
|A∗|) + 2|UA|+ 3(l − |UA|) which gives us:

dt = 3l − |UA|+ 2m− |A∗|

Since by definition |UA| ¬ l and |A∗| ¬ k, it is possible that dt < 2l+ 2m− k+ 1 only
when |UA| = l and |A∗| = k, i.e., ∀ui∈U∃Sj∈Sui ∈ Sj ∧ (t, Sj) ∈ A∗. This solution to the
problem of Hiding Leaders corresponds to a solution to the given instance of the 3-Set
Cover problem, which concludes the proof.

Having proven the NP-completeness of the problem for the case of the closeness cen-
trality, we next prove its NP-completeness for the case of the betweenness centrality.

As mentioned before, the proof for the betweenness centrality case follows a very
similar reasoning to the proof for the closeness centrality case. This time we add edges to
the network in order to create alternative shortest paths omitting node z, thus reducing
its betweenness centrality and making it lose the first place in the centrality ranking.

Theorem 7. The problem of Hiding Leaders is NP-complete given the betweenness cen-
trality measure.

Proof. The problem is trivially in NP, since after the addition of a given set of edges A∗,
and the removal of a given set of edges R∗, it is possible to compute the betweenness
centrality for all nodes in polynomial time.

Next, we prove that the problem is NP-hard. To this end, we propose a reduction from
the NP-complete 3-Set-Cover problem, as defined in Setion 2.3.3. To remind the reader,
U = {u1, . . . , ul} denotes the universe, S = {S1, . . . , Sm} denotes the set of subsets of the
universe, where for every Si we have that |Si| = 3, and the goal is to determine whether
there exist k elements of S the union of which equals U .

Given an instance of the 3-Set Cover problem, let us construct a network G as follows:

• The set of nodes: For every Si ∈ S, we create a single node denoted by Si, and
for every ui ∈ U , we create a single node denoted by ui. We denote the set of all
Si nodes by S, and the set of all ui nodes by U . In addition, we create α nodes
denoted by X = {x1, . . . , xα}, where α = m2l(m + l + 2) and β nodes denoted by
Y = {y1, . . . , yβ}, where β = m2l(k+ l+2). Lastly, we create four additional nodes,
denoted by t, z, w1 and w2.

• The set of edges: First, we create the edges (t, z) and (w1, w2). Then, for every
node xi we create an edge (xi, t), for every node yi we create an edge (yi, z). For
every node Si ∈ S we create an edge (Si, z), an edge (Si, w1), and an edge (Si, uj)
for every uj ∈ Si. For every node ui ∈ U we create an edge (ui, w2). We also create
edges such that the nodes in X form a clique, i.e., we create an edge (xi, xj) for
every xi, xj ∈ X, as well as edges such that the nodes in Y form a clique, i.e., we
create an edge (yi, yj) for every yi, yj ∈ Y .

49

𝑢1 𝑢2 𝑢𝑙
...

𝑆1 𝑆𝑚...

𝑧𝑡 ...
𝑦1

𝑦𝛽

...𝑥1

𝑥𝛼

𝑤2

𝑤1

Figure 4.3: An illustration of the network used in the NP-completeness proof of the
problem of Hiding Leaders given the betweenness centrality.

An example of the resulting network, G, is illustrated in Figure 4.3.
Now, consider instance (G,L, b, c, d, Â, R̂) of the problem of Hiding Leaders, where:

• G is the network we just constructed;

• L = {z, w1, w2} ∪ U ∪X ∪ Y ;

• b = k, where k is the parameter of the 3-Set Cover problem (where the goal is to
determine whether there exist k elements of S the union of which equals U);

• c is the betweenness centrality measure, i.e., we have that:

c(G, v) =
2

(n− 1)(n− 2)

∑
vj ,vk∈V \{vi}

|{p ∈ Π(vj, vk) : vi ∈ p}|
|Π(vj, vk)|

;

• d = 1;

• Â = {(t, Si) : Si ∈ S};

• R̂ = ∅.

From the definition of the problem of Hiding Leaders, we see that the only edges
that can be added to the graph are the edges between t and the members of S, i.e.,
A∗ ⊆ Â, where Â = {(t, S1), . . . , (t, Sm)}. Notice that any such choice of A∗ corresponds
to selecting a subset of |A∗| elements of S in the 3-Set Cover problem. In what follows,
we will show that a solution to the above instance of Hiding Leaders corresponds to a
solution to the 3-Set Cover problem.

First, we show that for every v ∈ V \ {t, z} and every A∗ ⊆ Â we have c(G′, v) <
c(G′, t), where G′ = (V,E∪A∗). To this end, let B(G′, v) denote the sum of percentages of

50

all short paths between all other pairs of nodes that are controlled by v, i.e., B(G′, v) =∑
w,w′∈V \{v}

|{p∈Π(w,w′):v∈p}|
|Π(w,w′)| . Note that B(G′, v) = (n−1)(n−2)

2 c(G′, v) We show that the
following holds:

∀v∈V \{t,z}∀A∗⊆ÂB(G′, v) < B(G′, t)

Note that since t controls all shortest paths between nodes inX and nodes in {z, w1, w2}∪
Y ∪ S ∪ U , we have that:

B(G′, t) ­ α(β +m+ l + 3) ­ m4l3(m+ l + 2) +m2l(m+ l + 2)2

Also, notice that since α = m2l(m+ l+ 2), β = m2l(k+ l+ 2), and k < m, we have that:

α + β < 2m2l(m+ l + 2)

For nodes other than t we have:

• B(G′, xi) = B(G′, yi) = 0 < B(G′, t), as nodes in X ∪Y do not control any shortest
paths.

• B(G′, w1) ¬ (α + β + m + 2) + m(m−1)
2 + ml ¬ 2m2l(m + l + 2) + m2 + m + ml <

(2m2l+m)(m+ l+ 2) < B(G′, t), because w1 controls some shortest paths between
w2 and nodes in {t, z} ∪ X ∪ Y ∪ S (there are α + β + m + 2 such pairs of these
nodes), some shortest paths between pairs of nodes in S (there are at most m(m−1)

2
such pairs of these nodes), and some shortest paths between nodes in U and nodes
in S (there are at most ml such pairs of these nodes).

• B(G′, w2) ¬ l(l−1)
2 + l + ml < l2+l

2 + ml < B(G′, t), because w2 controls some
shortest paths between pairs of nodes in U (there are at most l(l−1)

2 such pairs of
these nodes), some shortest paths between nodes in U and w1 (there are at most l
such pairs of these nodes), and some shortest paths between nodes in U and nodes
in S (there are at most ml such pairs of these nodes)/

• B(G′, ui) ¬ (α+ β +m+ 2) + m(m−1)
2 < B(G′, t), because ui controls some shortest

paths between w2 and nodes in {t, z}∪X∪Y ∪S (there are α+β+m+2 such pairs
of these nodes), and some shortest paths between pairs of nodes in S (there are at
most m(m−1)

2 such pairs of these nodes). Proof follows the same as for B(G′, w1)/

• B(G′, Si) ¬ 3(α + β + l + m + 2) + l + 2(α + β + 2) ¬ 5(α + β + l + m + 2) ¬
(10m2l+ 5)(m+ l+ 2) < B(G′, t), because Si controls some shortest paths between
nodes in U connected to Si and nodes in {t, z} ∪X ∪ Y ∪ S ∪U (there are at most
3(α + β + l + m + 2) such pairs of these nodes), some shortest paths between w1

and nodes in U (there are at most l such pairs of these nodes), and some of the
shortest paths between nodes in {w1, w2} and nodes in {t, z} ∪X ∪ Y (there are at
most 2(α + β + 2) such pairs of these nodes).

Therefore, either t or z has the highest betweenness centrality. Since z ∈ L and
t ∈ F , then A∗ ⊆ Â is a solution to the problem of Hiding Leaders if and only if
B(G′, t) > B(G′, z). We now compute the values of B(G′, t) and B(G′, z).

51

We have that:

B(G′, t) =α(β +m+ l + 3) +
∑

Si,Sj∈S:
(t,Si)∈E∧(t,Sj)∈E

1
|N(Si, Sj)|

+
∑

Si∈N(t)

∑
uj∈U\N(Si)

|N(t, uj)|
|N(t, uj)|+ |N(z, uj)|+ 1

as t controls all shortest paths between nodes in X and all other nodes (there are α(β +
m+l+3) such pairs), one shortest path between each pair of neighbouring nodes in S, and
paths between neighbouring nodes in S and nodes in U that T has common neighbours
with (other paths run through z and nodes in S, or through w1 and w2).

On the other hand, we have that:

B(G′, z) =β(α +m+ l + 3) +
∑

Si,Sj∈S

1
|N(Si, Sj)|

+
∑
Si∈S

∑
uj∈U\N(Si)

|N(z, uj)|
|N(t, uj)|+ |N(z, uj)|+ 1

+
∑

Si /∈N(t)

(α + 1) +
∑

ui∈U :N(t,ui)=∅
(α + 1)

as z controls all shortest paths between nodes in Y and all other nodes (there are β(α+
m+ l+ 3) such pairs), one shortest path between each pair of nodes in S, paths between
nodes in S and nodes in U , and all shortest paths between {t} ∪X and nodes {Si ∈ S :
Si /∈ N(t)} ∪ {ui ∈ U : N(t, ui) = ∅}.

Therefore we have that:

B(G′, z)−B(G′, t) =(β − α)(m+ l + 3) +
∑

Si,Sj∈S:
(t,Si)/∈E∨(t,Sj)/∈E

1
|N(Si, Sj)|

+ ∆SU +
∑

Si /∈N(t)

(α + 1) +
∑

ui∈U :N(t,ui)=∅
(α + 1)

where:

∆SU =
∑
Si∈S

∑
uj∈U\N(Si)

|N(z, uj)|
|N(t, uj)|+ |N(z, uj)|+ 1

−
∑

Si∈N(t)

∑
uj∈U\N(Si)

|N(t, uj)|
|N(t, uj)|+ |N(z, uj)|+ 1

.

Notice that B(G′, z) gets lower with the number of edges in A∗ and with the number
of ui ∈ U such that ∃Sj∈N(t)ui ∈ Sj. We will now prove that:

1. If |A∗| = k and for every ui ∈ U there exists Sj ∈ N(t) such that ui ∈ Sj, then
B(G′, z) < B(G′, t);

2. If |A∗| = k and there exists ui ∈ U such that for every Sj ∈ N(t) we have ui /∈ Sj,
then B(G′, z) > B(G′, t).

52

To prove the first inequality, we have that in this case:

B(G′, z)−B(G′, t) =(β − α)(m+ l + 3)

+
∑

Si,Sj∈S:
(t,Si)/∈E∨(t,Sj)/∈E

1
|N(Si, Sj)|

+ ∆SU + (m− k)(α + 1)

Since |{Si, Sj ∈ S : (t, Si) /∈ E ∨ (t, Sj) /∈ E}| = m(m−1)−k(k−1)
2 = (m−k)(m+k−1)

2 , and
|N(Si, Sj)| ­ 2 we have that:

B(G′, z)−B(G′, t) ¬ (β − α)(m+ l + 3) + (m− k)(α + 1 +
∆SU
m− k

+
m+ k − 1

4
).

By substituting values of α and β, and observing that ∆SU < ml and k < m, we have
that:

B(G′, z)−B(G′, t) < m2l(k−m)(m+ l+ 3) + (m−k)(m2l(m+ l+ 2) + 1 +ml+ 2m− 1),

that gives us:

B(G′, z)−B(G′, t) < (k −m)m2l + (m− k)(ml + 2m) = (k −m)m(ml − l − 2) < 0.

Hence, we have that if |A∗| = k and for every ui ∈ U there exists Sj ∈ N(t) such that
ui ∈ Sj, then B(G′, z) < B(G′, t).

To prove the second inequality, since there exists ui ∈ U such that for every Sj ∈ N(t)
we have ui /∈ Sj, we have that :

B(G′, z)−B(G′, t) ­(β − α)(m+ l + 3) +
∑

Si,Sj∈S:
(t,Si)/∈E∨(t,Sj)/∈E

1
|N(Si, Sj)|

+ ∆SU + (m− k)(α + 1) + (α + 1).

Since
∑

Si,Sj∈S:
(t,Si)/∈E∨(t,Sj)/∈E

1
|N(Si,Sj)| > 0 and ∆SU > 0, we have that:

B(G′, z)−B(G′, t) > (β − α)(m+ l + 3) + (m− k + 1)(α + 1).

By substituting values of α and β we have that:

B(G′, z)−B(G′, t) > m2l(k −m)(m+ l + 3) + (m− k + 1)(m2l(m+ l + 2) + 1),

that gives us:

B(G′, z)−B(G′, t) > m2l(k −m) +m2l(m+ l + 2) = m2l(k + l + 2) > 0.

Hence, we have that if |A∗| = k and there exists ui ∈ U such that for every Sj ∈ N(t) we
have ui /∈ Sj, then B(G′, z) > B(G′, t).

Therefore the solution to the problem of Hiding Leaders corresponds to a solution to
the given instance of the 3-Set Cover problem, which concludes the proof.

We now move to a setting, where instead of modifying an existing network, we want
to build a new structure, already with satisfying properties.

53

4.4 Constructing a Network

In the previous section we proved the NP-completeness of modifying an existing network
in order to hide its leaders. However, in certain cases the leaders might prefer to develop
a new covert network (e.g., a subnetwork in a new region) rather than to modify an
existing one.

In this section we show that it is possible to efficiently create a network designed
specifically to hide its leaders without limiting their ability to influence the other nodes.
We call this structure the captain network.

The intuition of its main principles is as follows. First the leader nodes, L, form a
clique, to provide the best possible communication among them. Each leader li ∈ L is
then assigned a group of k captains, Ci = {ci,1, . . . , ci,k}, that are connected to that
leader. All captains are then connected into a complete |L|-partite graph. A captain, ci,j
servers two purposes: the first is to conceal the leaders in L, by ensuring that it is ranked
higher than each of them (according to the rankings of the three standard centrality
measures); the second purpose of ci,j is to pass on the influence of li to the rest of the
network. The remaining nodes, the set of which is denoted X = {x1, . . . , xm}, are each
connected to one captain from each group. Note that the set of followers in this network
is F = X ∪ C1 ∪ . . . ∪ C|L| Figure 4.4 illustrates a sample captain network with |L| = 3.

𝑙2

…

…

……

𝑙1 𝑙3

𝑥1 𝑥2 𝑥𝑚

𝑐1,1

𝑐1,𝑘

𝑐3,1

𝑐3,𝑘

𝑐2,1

𝑐2,𝑘

Figure 4.4: An illustration of the captain network with |L| = 3. Edges including leaders
are depicted as solid black lines; edges between captains are depicted as gray lines; edges
between captains and other nodes are depicted as dashed lines.

Note that if the above steps are followed for the case of a single leader, the result
would be a tree structure. While a tree is a fairly common organizational structure, it
does not provide adequate hiding of the leader, as the leader can be identified as a root
of the tree. With this in mind, whenever there is a single leader, we create two groups of
captains to avoid the tree structure. The resulting structure is illustrated in Figure 4.5.
Algorithm 2 presents formally the steps required to create a captain network for a given
number of leaders.

54

…

……

𝑙

𝑥1 𝑥2 𝑥𝑚

𝑐1,2

𝑐1,𝑘

𝑐2,2

𝑐2,𝑘

𝑐1,1 𝑐2,1

Figure 4.5: An illustration of the captain network with one leader. Edges including leaders
are depicted as solid black lines; edges between captains are depicted as gray lines; edges
between captains and other nodes are depicted as dashed lines.

We now prove that every captain has higher centrality values than each of the leaders.

Theorem 8. Given a captain network, let r =
⌊
m
k

⌋
denote the minimal number of connec-

tions that a captain, ci,j, has with nodes from X. Then, if either (|L| ­ 2 and r ­ 1), or
(|L| = 1 and k < r+ 1), then every captain has greater degree, closeness and betweenness
centrality values than each of the leader nodes.

Proof. Starting with degree centrality and multiple leaders, the degree centrality of a
leader node, l, is cdegr(G, l) = |L|+k−1

n−1 , since it is only connected to other leaders and
captains from its group. On the other hand, the degree centrality of a captain, ci,j, is
cdegr(G, ci,j) ­ 1+k(|L|−1)+r

n−1 , since it is connected to one of the leader nodes, to all captains
from other groups, and to at least r other nodes from X. As such, we have:

cdegr(G, ci,j)− cdegr(G, l) ­
1 + k(|L| − 1) + r − (|L|+ k − 1)

n− 1
,

that gives us:

cdegr(G, ci,j)− cdegr(G, l) ­
(|L| − 2)(k − 1) + r

n− 1
Therefore, since |L| ­ 2, k ­ 1, and r ­ 1, we have that cdegr(G, ci,j) > cdegr(G, l) for any
ci,j.

As for the case with a single leader, the degree of the leader node, l, is cdegr(G, l) = 2k
n−1 ,

since it is only connected to captains from both groups. On the other hand, the degree
of a captain ci,j, is cdegr(G, ci,j) ­ 1+k+r

n−1 , since it is connected to the leader node, to all
captains from other group, and to at least r members. As such, we have:

cdegr(G, ci,j)− cdegr(G, l) ­
1 + k + r − 2k

n− 1
,

that gives us:

cdegr(G, ci,j)− cdegr(G, l) ­
1 + r − k
n− 1

55

Algorithm 2 The construction of a captain network
Input: The set of leaders L = {l1, . . . , l|L|}, the set of followers F = {f1, . . . , f|F |}, the

number of captains in each group k (where 1 ¬ k ¬ |F |
|L|).

Output: The set of edges E that constitutes the captain network
g ← max(2, |L|)
for i = 1, . . . , g do

for j = 1, . . . , k do
ci,j ← f(i−1)k+j

Ci ← Ci ∪ {ci,j}
X ← F \ ⋃gi=1Ci
for li, lj ∈ L do

E ← E ∪ {(li, lj)}
for li ∈ L do

for ci,j ∈ Ci do
E ← E ∪ {(li, ci,j)}

if |L| = 1 then
for c2,j ∈ C2 do

E ← E ∪ {(l1, c2,j)}
for Ci 6= Cj do

for c ∈ Ci do
for c′ ∈ Cj do

E ← E ∪ {(c, c′)}
j ← 0
for x ∈ X do

for i = 1, . . . , g do
E ← E ∪ {(x, ci,j)}

j ← (j + 1) mod k

Therefore, we have that cdegr(G, ci,j) > cdegr(G, l) for k < r + 1.
Moving on to the closeness centrality, for any given node v, this centrality depends

inversely on the sum of the lengths of shortest paths from v to every other node, i.e.,∑
w∈V d(v, w). For every leader and every captain, the distance to every other node is

either 1 or 2. More precisely, for every v ∈ V , we have:
∑
w∈V d(v, w) = 1|N(v)| + 2(n−

|N(v)|) = 2n−|N(v)|. Consequently, whenever all captains have greater degree centrality
than all leaders, they must also have greater closeness centrality. Since we have already
proven this fact for the degree centrality, then this implies that cclos(G, ci,j) > cclos(G, l).

Finally, regarding the betweenness centrality, letB(v) denote
∑
u,w∈V \{v}

|{p∈Π(u,w):v∈p}|
|Π(u,w)| .

Then the betweenness centrality of a node v ∈ V can be written as:

cbetw(G, v) =
2

(n− 1)(n− 2)
B(v).

For a network with multiple leaders, every leader node l belongs to one of (|L|−1)k+1
shortest paths between the pairs of captains from its group (alternative shortest paths
run through captains from other groups), as well as one of k + 1 shortest paths between

56

each captain from its group and all other leaders (alternative shortest paths run through
captains from the group of the chosen leader). Since the leader node l belongs to no other
shortest paths, we have:

B(l) =
k(k − 1)

2((|L| − 1)k + 1)
+
k(|L| − 1)
k + 1

Having analysed B(l), let us now analyse B(ci,j) for captain ci,j. In particular, since
ci,j belongs to one of (|L|−1)k+1 shortest paths between pairs of captains from all other
groups, as well as one of k+ 1 shortest paths between each of the captains from the other
groups and the leader of its group, and some shortest paths between neighbouring nodes
from X and the leader of its group, we have:

B(ci,j) >
(|L| − 1)k(k − 1)
2((|L| − 1)k + 1)

+
k(|L| − 1)
k + 1

Therefore, we have that B(ci,j) > B(l), which results in cbetw(G, ci,j) > cbetw(G, l).
For a network with a single leader, the leader node l belongs to one of the k + 1

shortest paths between the pairs of captains from each group (alternative shortest paths
run through captains from the other group). Since the leader node l belongs to no other
shortest paths, we have:

B(l) =
k(k − 1)
(k + 1)

Having analysed B(l), let us now analyse B(ci,j) for captain ci,j. In particular, since ci,j
belongs to one of the k+1 shortest paths between pairs of captains from the other group,
and to the only shortest path between the member nodes connected to it and the captains
from the other group, we have:

B(ci,j) >
k(k − 1)
2(k + 1)

+ rk =
k(k − 1) + 2rk(k + 1)

2(k + 1)

Therefore, since 2rk(k + 1) > k(k − 1), we have that B(ci,j) > B(l), which implies that
cbetw(G, ci,j) > cbetw(G, l).

As stated in Theorem 8, a captain network can indeed conceal its leaders as far as
centrality is concerned. On the other hand, as far as influence is concerned, we evaluate
the network empirically to see how the different parameters affect the influence of the
leaders. To this end, given a captain network with 400 nodes, we varied the parameters of
the network, namely k (the size of each captain group) and |L| (the number of leaders) for
a network with multiple leaders. For every pair of parameters, we measure the difference
in centrality between a leader node, and each captain (the greater the difference, the
greater the leaders’ disguise), and measured the influence of a leader to see how this
influence is affected by the disguising process. When measuring the influence, we used the
Independent Cascade model with probability 0.15 on each edge, and the Linear Threshold
model with the threshold value sampled uniformly at random.

The results are depicted in Figures 4.6 and 4.7. Both figures should be read as follows.
The x-axis represents the number of captains in each group. The y-axis represents the
number of leaders of the network. The more intense the color in Figure 4.6, the higher

57

Degree Closeness Betweenness

2

3

4

5

6

7

8

9

10

1

2 4 6 8 10 12 14 16 18 20
No. of captains

N
o.

 o
f l

ea
de

rs

−0.4 −0.3 −0.2 −0.1 0.0

2

3

4

5

6

7

8

9

10

1

2 4 6 8 10 12 14 16 18 20
No. of captains

N
o.

 o
f l

ea
de

rs

−0.16 −0.12 −0.08 −0.04 0.00

2

3

4

5

6

7

8

9

10

1

2 4 6 8 10 12 14 16 18 20
No. of captains

N
o.

 o
f l

ea
de

rs

−0.3 −0.2 −0.1

Figure 4.6: Given a captain network of 400 nodes, with different number of captains
in each group (the x-axis) and number of leaders (the y-axis), the figure depicts the
difference in centrality between a leader and a captain.

the difference in centrality between a leader node and a captain, and the safer the leader.
The more intense the color in Figure 4.7, the higher the influence of a leader node.

Roughly speaking, the results can be categorized into three groups:

• small k: This yields relatively high levels of disguise in terms of degree, close-
ness, and betweenness centralities. On the other hand, it yields rather low levels of
Independent-Cascade influence and Linear-Threshold influence.

• large k and small |L|: This yields relatively low levels of disguise in terms of degree,
closeness and betweenness centralities. On the other hand, it yields relatively high
levels of Linear-Threshold influence, but not Independent-Cascade influence.

• large k and large |L|: This yields relatively high levels of disguise in terms of degree
and closeness centralities, but not the betweenness centrality. On the other hand,
it yields relatively high levels of Independent-Cascade influence, but not Linear-
Threshold influence.

4.5 Concluding Remarks

The model studied in this chapter offers new insights into the secrecy-efficiency trade-off
faced by the covert organizations. The novelty of our approach comes from our defini-
tion of secrecy, which assumes that the members of a terrorist network act strategically
to evade detection by centrality measures. Indeed, it is well established that centrality
measures belong to the key social network analysis tools used to analyse covert networks.
Unfortunately, centrality measures—like most other social network analysis tools—were
designed to analyse social networks among members of the general public, rather than
among members of covert organizations who are well aware of the possibility of attracting
unwanted attention from the authorities.

58

IC Influence LT Influence

2

3

4

5

6

7

8

9

10

1

2 4 6 8 10 12 14 16 18 20
No. of captains

N
o.

 o
f l

ea
de

rs

100 200 300

2

3

4

5

6

7

8

9

10

1

2 4 6 8 10 12 14 16 18 20
No. of captains

N
o.

 o
f l

ea
de

rs

10 20 30

Figure 4.7: Given a captain network of 400 nodes, with different number of captains in
each group (the x-axis) and number of leaders (the y-axis), the figure depicts the influence
value of a leader.

However, recent findings—especially with the respect to the tech-savvy ISIS—clearly
demonstrate that such an assumption may be incorrect. The known evading techniques
used by ISIS range from changing aliases and keeping own profile private [109] to us-
ing encrypted communication platforms [74] and staging an entire group disappearance
from the social media only to pop up again in a different place and under alternative
aliases [109]. In fact, it has been claimed that the evasion capabilities of ISIS signifi-
cantly increased after Edward Snowden’s disclosure of classified information on the social
network analysis techniques used by US intelligence [129].

We now describe a number of limitations of our study that also show directions in
which our model can be extended. First, we only consider possible strategies of the
evaders, i.e., the members of covert organization, and we assume that the seeker, i.e.,
the party who is using centrality measures to identify key terrorists, is unaware of any
potential strategic efforts of the evaders. It would be interesting to see new social network
analysis tools, and centrality measures in particular, that are immune (at least to some
extent) against such evasion techniques. That includes considering an opposite problem,
i.e., assuming the perspective of the seeker who intends to identify the nodes that try to
maintain low positions in centralities rankings. For example, nodes whose centrality can
be greatly increased by modifying just a few edges may be suspected of having performed
hiding process in the past.

Second, our model assumes that the seeker’s knowledge is restricted to the topology of
the network. The motivation behind this assumption is twofold: (a) the most fundamental
social network analysis tools—including the ones studied in this dissertation—are all

59

based solely on the topology of the network; and (b) the exclusion of domain knowledge
makes the model more general, as it can be applied to any network. Nevertheless, there
may be cases where the seeker has additional, domain-dependent information that might
be used in conjunction with social network analysis tools, e.g., as in the case of covert
networks [100]. In such cases, further investigation is needed to understand the extent to
which the evaders can protect themselves against the seeker.

Third, in the construction our captain networks we focus solely on the matter of
assuring safety of the leaders in terms of low positions in centrality rankings. Interesting
direction for future research is development of network structures that incorporate also
other features, e.g., topologies that not only provide low centrality of the leaders, but are
also resilient to potential attacks. Another possible desired network quality is for it to be
similar to another network structure, e.g., to manifest small-world qualities. This type of
communication structure would be easier to hide in plain sight as a part of another social
network.

Finally, another interesting direction is to investigate whether there exist special
classes of networks for which the problem of Hiding Leaders can be easily solved, e.g.,
trees or networks with small treewidth.

60

Chapter 5

Hiding Communities

In this chapter we analyse the problem of preventing a group of nodes to be identified as a
community by a community detection algorithm. We present the formal definition of the
problems, analyse the complete information setting, introduce the first measure of how
well the community is hidden in a community structure and provide heuristic solution to
the hiding problem.

5.1 Introduction

While there exists no precise definition of a community, typically it is understood as a
group of nodes who are more densely connected among themselves than with the rest
of the network.1 Various dedicated community detection algorithms have been proposed
in the literature (see Section 5.2 for an overview). Such algorithms return a community
structure, i.e., a partition of the set of nodes into typically-disjoint communities. In this
context, the modularity index is a well-known measure of the quality of a particular
community structure. As such, any community detection algorithm searches through the
space of community structures to select the one that has a particularly high modularity.

In this chapter, we investigate whether and how a community could hide itself within
a network so that it becomes difficult to identify by various community-detection al-
gorithms. Our motivation is twofold. Firstly, a community may be simply interested in
privacy—a value that seems to be increasingly violated by the process of datafication.
Consider, for instance, police units that are involved in undercover operations against
street gangs. The private life of this community should not be easily traceable on Face-
book or Twitter. What this lack of privacy might lead to has been recently shown by
various Ukrainian activists groups who have identified Russian military units in Don-
bass by analysing social networking sites [3]. As yet another example, staying “below
the radar” is imperative for communities of opposition blogers in authoritarian regimes,
because such regimes actively monitor internet content [77]. Our second motivation is
related to security. In particular, methods of social network analysis are becoming in-
creasingly used in the fight against criminal organisations [152]. Hence, it is important
to understand how various community detection algorithms could be “fooled” by such
covert organizations.

1See the work by Fortunato [51] for a detailed discussion of alternative ways to define communities.

61

We study how a community can conceal itself to increase the likelihood of being over-
looked by community-detection algorithms. To this end, we propose a measure of con-
cealment designed to quantify the degree to which a group of individuals is hidden. Using
this measure, we demonstrate the effectiveness of yet another simple heuristic, whereby
members of the community either “unfriend” certain other members, or “befriend” some
non-members, in order to blend in with the surrounding web of social connections.

The remainder of this chapter is organised as follows. In Section 5.2 we present com-
munity detection algorithms and basic concepts used in this chapter. In Section 5.3 we
describe the problem of lowering modularity of a chosen community structure. In Sec-
tion 5.4 we propose the first measure of how well a community is hidden within a com-
munity structure. In Section 5.5 we present and test a simple heuristic solution, allowing
community members to better hide the fact of their cooperation in a social network. We
conclude with discussion of the results and ideas for future work in Section 5.6.

5.2 Preliminaries

We consider a community structure, Γ = {C1, . . . , Ck}, to be a partition of the set of
nodes into disjoint subsets, or communities.2 Formally, it satisfies the following three
conditions: ∀Ci∈ΓCi ⊆ V ,

⋃
Ci∈Γ Ci = V , and ∀Ci,Cj∈ΓCi ∩ Cj = ∅.

We denote the set of edges between the members of the communities Ci and Cj by
EG(Ci, Cj), i.e., EG(Ci, Cj) = {(v, w) ∈ E : v ∈ Ci, w ∈ Cj}. We denote the set of edges
between the members of Ci by EG(Ci), i.e., EG(Ci) = EG(Ci, Ci). Finally, we denote the
sum of degrees of nodes in Ci by δG(Ci), i.e., δG(Ci) =

∑
v∈Ci δG(v); this is called the

degree of community Ci. Notice, that δG(Ci) = 2|E(Ci)|+
∑
Cj 6=Ci |E(Ci, Cj)|.

Modularity [108] is the most widely used measure of quality of a given community
structure. Modularity of a community structure Γ in a network G can be expressed
as [23]:

QG(Γ) =
∑
Ci∈Γ

 |EG(Ci)|
|E|

−
(
δG(Ci)
2|E|

)2
 .

The intuition behind the modularity measure is the preference of community structures,
where the most edges are between the nodes in the same community (component |EG(Ci)|

|E|).
However, this criterion is always maximized by a community structure consisting of a
single community, i.e., Γ = {V }. Hence the need of balancing the modularity value by

subtracting the sum of squares of communities degrees (component
(
δG(Ci)

2|E|

)2
).

A community detection algorithm is an algorithm that, given a network G, returns a
community structure of the nodes of G. Formally, it is a function ρ : G→ 22V , where ρ(G)
satisfies the three conditions of being a community structure for any G, i.e., ∀Ci∈ΓCi ⊆ V ,⋃
Ci∈ΓCi = V , and ∀Ci,Cj∈ΓCi ∩ Cj = ∅. The problem of finding a community structure

with maximal modularity is NP-complete [24], and there exist many algorithms designed
to find a solution of acceptable quality in a reasonable time.

In this dissertation we consider seven community detection algorithms implemented
in the igraph [39] package of the R programming language, version 1.0.1. These are:

2Some works consider overlapping community structures [151]. However, as is common in the litera-
ture, we restrict our attention to disjoint ones.

62

• Betweenness [108], based on iterative removal of edges with largest number of short-
est paths running through them. Communities correspond to connected components
of the resulting network.

• Greedy [32], based on computing local modularity optima, starting with each node
as a separate community and merging communities that provide the highest mod-
ularity gain.

• Walktrap [119], based on a tendency of random walks to stay within a single com-
munity, rather than to move to another.

• Eigenvector [107], recursively splitting nodes into two groups. Each split is deter-
mined by the signs in the eigenvector corresponding to the highest eigenvalue of the
adjacency matrix of the network.

• Louvain [18], based on the multi-level modularity optimization. When a local op-
timum is achieved by greedy merging, each community is treated as a single node
and the process continues for this new network.

• Infomap [125], based on compressing a description of the probability flow, intended
to model the information flow in the network.

• Spinglass [123], based on physical interpretation of the community structure, where
each node is an atom in a disordered magnet and the assignment to the particular
community is its spin. The algorithm intends to minimize the energy of such system.

Lancichinetti and Fortunato [83] provide a comparison of various community detection
algorithms. According to their analysis, Infomap [125] algorithm has the best performance
of the considered set of algorithms. Their benchmark is the set of random graphs, where
the underlying community structure is known.

5.3 Minimizing Modularity

In this section, we focus on the case where the community C† knows the exact community-
detection algorithm that the adversary will use, and knows that the algorithm will return
a particular community structure Γ such that C† ∈ Γ. Knowing this, the goal of C† is
to rewire the network such that the modularity of Γ is minimized, with the hope that if
the aforementioned algorithm is used, Γ will not be detected. Here, we assume that C†

has a budget, b ∈ N, which specifies the maximum number of edges that C† can afford
to modify, i.e., add or remove. More formally, our problem is defined as follows.

Definition 5 (Minimizing Modularity). Let G = (V,E) be a network, and let Γ be
a community structure. Then, given a community C† ∈ Γ and a budget b ∈ N, the
Minimizing Modularity problem is to find a set of edges to be added A∗ ⊆ Ē and another
to be removed R∗ ⊆ E such that |A∗|+ |R∗| ¬ b and G∗ = (V, (E ∪ A∗) \R∗) is in:

arg min
G′∈{(V,(E∪A)\R):A⊆Ē,R⊆E,|A|+|R|¬b}

QG′(Γ).

63

In our analysis, we study the problems of adding edges and removing edges separately.
As it turns out, when considering the problem of adding a single edge to lower mod-

ularity in an optimal way, the best choice is adding an edge between two communities
with highest degrees.

Theorem 9. Let G = (V,E) be a network, and Γ = {C1, . . . , Ck} be a community
structure with communities sorted in decreasing order accordingly to their degree, i.e.,
∀1¬i<kδG(Ci) ­ δG(Ci+1). Then, for any two unconnected nodes, vi ∈ C1 and vj ∈ C2, we
have:

(vi, vj) ∈ arg min
e∈Ē

Q{V,E∪{e}}(Γ).

Proof. Let us first introduce the following notation: ζG(Γ) =
∑
Ci∈Γ |EG(Ci)|, and λG(Γ) =∑

Ci∈Γ δG(Ci)2. Let m denote the number of edges in the graph, i.e., m = |E|. With this
notation in hands, modularity QG(Γ) can be expressed as follows:

QG(Γ) =
ζG(Γ)
m
− λG(Γ)

4m2
.

Now, let G+
i denote the network that results from adding to G an edge (v, w) : v, w ∈ Ci.

Likewise, let G+
ij denote the network that results from adding to G an edge (v, w) : v ∈

Ci, w ∈ Cj, where i 6= j. Next, we show how to compute the modularity of Γ in each of
these networks.

Let us start by analysing the effect of adding to G an edge (v, w) : v, w ∈ Ci. This
increases the number of intra-community edges in Ci by 1 (implying that ζG+i (Γ) =
ζG(Γ) + 1), and increases the sum of degrees of the members of Ci by 2 (thus δG+i (Ci) =
δG(Ci) + 2 and λG+i

(Γ) = λG(Γ)− δG(Ci)2 + (δG(Ci) + 2)2). Consequently, we have:

QG+i
(Γ) =

ζG(Γ) + 1
m+ 1

− λG(Γ) + 4δG(Ci) + 4
4(m+ 1)2

.

As can be seen, QG+i
(Γ) decreases with δG(Ci), implying that: C1 ∈ arg minCi∈ΓQG+i

(Γ).
Let us move on to analysing the effect of adding to G an edge (v, w) where v ∈ Ci,

w ∈ Cj, and i 6= j. This causes an increase in the sum of degrees of the members of Ci and
the members of Cj by 1 each (i.e., δG+ij(Ci) = δG(Ci)+1 and δG+ij(Cj) = δG(Cj)+1), which

in turn implies that: λG+ij(Γ) = λG(Γ)− δG(Ci)2 + (δG(Ci) + 1)2− δG(Cj)2 + (δG(Cj) + 1)2.
Consequently:

QG+ij
=
ζG(Γ)
m+ 1

− λG(Γ) + 2δG(Ci) + 2δG(Cj) + 2
4(m+ 1)2

.

SinceMG+ij
(Γ) decreases with δG(Ci) and δG(Cj), then: {C1, C2} ∈ arg min{Ci,Cj}⊆Γ:i 6=j QG+ij

(Γ).

Having analysed G+
i and G+

ij, let us now compare the two. In particular, we have

QG+i
(Γ)−QG+ij

(Γ) =
2m+ 1− δG(Ci) + δG(Cj)

2(m+ 1)2
.

Since δG(Ci) ¬ 2m, we have that: QG+i
(Γ) > QG+ij

(Γ). In other words, adding an edge

64

between members of two communities decreases the modularity of Γ more than adding
an edge between members of the same community. Furthermore, we showed that adding
an edge between C1 and C2 decreases the modularity of Γ more than adding an edge
between any other pair of communities. This concludes the proof.

Having analysed the minimization of modularity when adding an edge, we now analyse
it during the edge removal. As it turns out, when considering the problem of removing a
single edge to lower modularity in an optimal way, the best choice is removing an edge
from inside the community with minimal degree.

Theorem 10. Let G = (V,E) be a network, and Γ = {C1, . . . , Ck} be a community
structure with communities sorted in decreasing order accordingly to their degree, i.e.,
∀1¬i<kδG(Ci) ­ δG(Ci+1). Then, for any two nodes, v, w ∈ Ck, we have:

(v, w) ∈ arg min
e∈E

Q{V,E\{e}}(Γ).

Proof. We will follow a similar reasoning as in the proof of Theorem 9. In more detail,
let G−i denote the network that results from removing an edge (v, w) : v, w ∈ Ci from
G. Likewise, let G−ij denote the network that results from removing an edge (v, w) :
v ∈ Ci, w ∈ Cj from G, where i 6= j. Next, we analyse each of these networks, before
comparing them against each other. In what follows ζ, λ and m are defined as in the
proof of Theorem 9.

Starting with G−i , the removal of an edge (v, w), such that v, w ∈ Ci, decreases
the number of intra-community edges by 1 (implying that ζG−i (Γ) = ζG(Γ) − 1), and
decreases the sum of degrees of the members of Ci by 2 (thus δG−i (Ci) = δG(Γ)(Ci) − 2
and λG−i

(Γ) = λG(Γ)− δG(Ci)2 + (δG(Ci)− 2)2). As a result, we have:

QG−i (Γ) =
ζG(Γ)− 1
m− 1

− λG(Γ)− 4δG(Ci) + 4
4(m− 1)2

.

As can be seen, QG−i
(Γ) increases with δG(Ci), implying that:

Ck ∈ arg min
Ci∈Γ

QG−i
(Γ).

Having discussed G−i , let us now discuss G−ij. Here, the removal of an edge (v, w),
such that v ∈ Ci, w ∈ Cj, decreases the sum of degrees of the members of Ci and
the members of Cj by 1, i.e., δG−ij(Ci) = δG(Ci) − 1 and δG−ij

(Cj) = δG(Cj) − 1. Thus:

λG−ij
(Γ) = λG(Γ)−δG(Ci)2 +(δG(Ci)−1)2−δG(Cj)2 +(δG(Cj)−1)2. As a result, we have:

QG−ij
(Γ) =

ζG(Γ)
m− 1

− λG(Γ)− 2δG(Ci)− 2δG(Cj) + 2
4(m− 1)2

.

Since QG−ij
(Γ) increases with both δG(Ci) and δG(Cj), we have:

{Ck, Ck−1} ∈ arg min
{Ci,Cj}⊆Γ:i 6=j

QG−ij
(Γ).

65

Having analysed G−i and G−ij, let us now compare the two. In particular:

QG−i
(Γ)−QG−ij

(Γ) =
−2m+ 1 + δG(Ci)− δG(Cj)

2(m− 1)2
.

Since δG(Ci) ¬ 2m, then QG−i
(Γ) < QG−ij

(Γ). In other words, the removal of an edge
between members of the same community decreases the modularity of Γ more than the
removal of an edge between members of two different communities. Furthermore, we have
shown that, out of all communities, the removal of an edge between members of Ck
decreases the modularity of Γ the most. This concludes the proof.

Having dealt with the cases of adding and removing an edge, we now compare them
against each other. The following corollary summarizes the findings of two previous the-
orems.

Corollary 1. Let G = (V,E) be a network, and Γ = {C1, . . . , Ck} be a community
structure with communities sorted in decreasing order accordingly to their degree, i.e.,
∀1¬i<kδG(Ci) ­ δG(Ci+1). Then, out of all single modifications of G (i.e., addition or
removal of a single edge), the single modification that minimizes the modularity of Γ is
the addition of (v, w), such that v ∈ C1, w ∈ C2, if QG+12

(Γ) > QG−
k

(Γ). Otherwise, it is
the removal of (v, w), such that v, w ∈ Ck.

𝐶1 𝐶2

Figure 5.1: A coarse-grained community
structure.

𝐶1 𝐶3 𝐶4 𝐶6

𝐶2 𝐶5

Figure 5.2: A fine-grained community struc-
ture.

Figures 5.1 and 5.2 present a sample network with two different community structures,
one consisting of two communities (Figure 5.1) and another consisting of six communities
(Figure 5.2). Let us first comment on Figure 5.1. Here, the community structure, Γ,
satisfies: QG+12

(Γ) > QG−
k

(Γ). Thus, out of all single modifications of the network (i.e.,
addition or removal of a single edge), the one that minimizes the modularity of Γ is the
addition of an edge between the two communities therein (see Corollary 1). On the other
hand, in Figure 5.2, the depicted community structure Γ satisfies: QG+12

(Γ) < QG−
k

(Γ).
Thus, the single modification that minimizes the modularity of Γ is the removal of an
edge from within the community Ci whose sum of degrees δG(Ci) is minimal (here, any
community would be suitable, since the sum of degrees is equal in all of them).

66

5.4 Measure of Concealment

We now propose a measure of concealment, designed specifically to reflect how well a
given group C† is hidden in a particular community structure Γ. Importantly, in this
section C† is not necessarily a member of Γ. As such, when measuring how well C† is
hidden in Γ, it may well be the case that the members of C† are spread out across multiple
communities in Γ.

To this end, we will first propose two measures, denoted by µ′G and µ′′G, which capture
different aspects of concealment, and then we merge them into a single measure. More
specifically, µ′G is defined for every community structure Γ and every community C† ⊆ V
as follows:

µ′G(C†,Γ) =
|{Ci ∈ Γ : Ci ∩ C† 6= ∅}| − 1

max(|Γ| − 1, 1) maxCi∈Γ(|Ci ∩ C†|)
.

Basically, this measure focuses on how well the members of C† are spread out across
the communities in Γ. In more detail, we have that µ′G(C†,Γ) ∈ [0, 1], and the greater
µ′G(C†,Γ), the more C† is concealed in Γ. Note that the numerator grows linearly with
the number of communities that C† is distributed over. Subtracting 1 from both the
numerator and the |Γ| term of the denominator is meant to handle the worst case, where
all members of C† appear in a single (possibly larger) community in Γ; in this case,
we have: µ′G(C†,Γ) = 0. In contrast, the term maxC∈Γ(|C ∩ C†|) is meant to promote
community structures in which the members of C† are more evenly distributed across the
communities in Γ. As such, the maximum concealment is achieved when the members of
C† are uniformly distributed, with each member appearing in its own separate community;
in this case, we have: µ′G(C†,Γ) = 1.

While µ′G focuses on how well the members of C† are distributed across communities,
µ′′G focuses on how well C† is “hidden in the crowd”. More specifically, µ′′G is defined as:

µ′′G(C†,Γ) =
∑

Ci∈Γ:Ci∩C† 6=∅

|Ci \ C†|
max(n− |C†|, 1)

.

Just like the case with µ′G, we have µ′′G(C†,Γ) ∈ [0, 1], and the greater µ′′G(C†,Γ), the
more C† is concealed in Γ. As can be seen, the value of this measure grows linearly with
the number of non-members of C† that appear in a communities containing members of
C†.

As we have described, the measures µ′G and µ′′G view the concealment of a community
from two different perspectives. With this in mind, we combine them into a single measure,
denoted by µG, whereby the trade-off between the two measures is controlled by parameter
α ∈ [0, 1]. More formally, our proposed measure of concealment of a community C† in a
community structure Γ is defined as follows:

µG(C†,Γ) = αµ′G(C†,Γ) + (1− α)µ′′G(C†,Γ).

Naturally, for all C† and Γ we have µG(C†,Γ) ∈ [0, 1], where greater values indicate
greater levels of concealment. Unless stated otherwise, in the rest of this dissertation we
will consider our concealment measure with α = 1

2 .
To illustrate how our measure works, we present in Figures 5.3, 5.4 and 5.5 a sample

network with three different community structures, where the goal is to measure the

67

𝐶1

𝐶2

𝐶3

𝐶†

𝜇′(𝐶†,𝐶𝑆) = 0

𝜇′′(𝐶†,𝐶𝑆) = 0

𝜇(𝐶†,𝐶𝑆) = 0

Figure 5.3: Example of
a community structure,
where µ(C†,Γ) = 0.

𝐶1

𝐶3

𝐶2

𝐶†

𝜇′(𝐶†,𝐶𝑆) = 0.25
𝜇′′(𝐶†,𝐶𝑆) = 0.5
𝜇(𝐶†,𝐶𝑆) = 0.375

Figure 5.4: Example of
a community structure,
where µ(C†,Γ) = 3

8 .

𝐶1

𝐶† 𝐶4

𝐶2

𝐶3

𝜇′(𝐶†,𝐶𝑆) = 1

𝜇′′(𝐶†,𝐶𝑆) = 1

𝜇(𝐶†,𝐶𝑆) = 1

Figure 5.5: Example of
a community structure,
where µ(C†,Γ) = 1.

concealment of C†. The concealment of C† in Figure 5.3 is µ(C†,Γ) = 0, which is because
the members of C† are completely exposed as a separate community. In contrast, given
the community structure in Figure 5.4 the concealment of C† is µ(C†,Γ) = 3

8 . Eventually,
in Figure 5.5 we have µG(C†,Γ) = 1.

Finally, we define a new variant of the problem of disguising a community, where the
the members of community C† intend to rewire the network so that µ(C†,Γ) is maximized.
More formally:

Definition 6 (Concealing Community). This problem is defined by a tuple, (G,C†, ρ, b),
where G = (V,E) is a network, C† ⊆ V is the community to be hidden, ρ : G → 22V is
a community-detection algorithm, and b ∈ N is a budget specifying the maximum number
of edges that can be added or removed. The goal is then to find two sets of edges A∗ and
R∗ (where edges from A∗ will be added and edges from R∗ will be removed), such that
|A∗|+ |R∗| ¬ b and G∗ = (V, (E ∪ A∗) \R∗) is in:

arg max
G′∈{(V,(E∪A)\R):A⊆Ē,R⊆E,|A|+|R|¬b}

µG′(C†, ρ(G′)).

5.5 Heuristic Solution

We now describe a simple heuristic solution to the Concealing Community problem.

5.5.1 The DICE Heuristic

We set to develop a simple heuristic that can be applied by any group of people regard-
less of their technical background or their knowledge of the network topology. After all,
it would be of limited use to have an exact algorithm that can only be understood or
applied by optimization experts armed with enormous processing power. Likewise, exact

68

algorithms that require knowing the entire network topology may prove to be imprac-
tical since such knowledge is rarely available. Our heuristic, called DICE—Disconnect
Internally, Connect Externally—is presented as Algorithm 3.

Algorithm 3 The DICE heuristic
Input: A network G = (V,E), budget b ∈ N, number of edges to remove d ¬ b, commu-

nity C† ⊆ V to be hidden
Output: Sets of edges to be added A∗ and to be removed R∗ from the network

for i = 1, . . . , d do
Choose random (v, w) ∈ E(C†)
R∗ = R∗ ∪ {(v, w)}

for i = 1, . . . , b− d do
Choose random (v, w) ∈ Ē, where v ∈ C† and w /∈ C†
A∗ = A∗ ∪ {(v, w)}

This heuristic is inspired by the analysis provided in Section 5.3, particularly in Corol-
lary 1. As community-detection algorithms are typically designed to search for a structure
that maximizes modularity, they promote structures that have dense connections within
communities and sparse connections between them. With this in mind, the first loop of
our heuristic decreases the density of the connections within C†, whereas the second loop
increases the connections between C† and other communities. By doing so, a community-
detection algorithm is more likely to overlook C†, i.e., it may fail to recognize C† as a
community, and may instead assign its members to multiple communities. Parameter d
allows the group of evaders to control the trade-off between concealment and connected-
ness. Increasing d would sacrifice the connectivity within the group in return for a better
camouflage.

Let us comment on how DICE can be applied in practice. On Facebook, for exam-
ple, the first loop requires some members to “unfriend” other members, which is rather
straightforward. As for the second loop, members must send a friendship request to non-
members. These could be classmates, coworkers, neighbours living next door, or even
random people (it is possible to try multiple random friendship requests, hoping that
some of them would be successful).

5.5.2 Experimental Results

We now describe experimental results of using DICE heuristic to conceal community in the
network. For each network, we experiment with seven community-detection algorithms
described in Section 5.2, namely: Eigenvector [107], Betweenness [108], Walktrap [119],
Louvain [18], Greedy [32], Infomap [125] and Spinglass [123].

Every experiment consists of a community-detection algorithm and a network. The
experiment starts by running the algorithm to obtain a community structure Γ. After that,
the group of evaders, i.e., C†, is chosen to be the element in Γ whose size is the median
of the sizes of all communities in Γ (ties are broken uniformly at random). Although C†

does not necessary have to be an element of Γ, we choose it this way in order to study
the worst case scenario in which C† is initially exposed completely by the algorithm. The
experiment then proceeds in rounds, each involving the execution of DICE followed by

69

(b = 4, d = 0) (b = 4, d = 4)
M

ad
ri

d
bo

m
bi

ng

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Sc
al

eF
re

e(
10

0,
3)

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Fa
ce

bo
ok

(m
ed

iu
m

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Betweenness

Eigenvector

Greedy

Infomap

Louvain

Spinglass

Walktrap

Figure 5.6: Consecutive execution of DICE
⌈
|C†|
b

⌉
times (the x-axis represents the comple-

tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE (b, d), where b is the budget in
each execution, and d is the number of removed internal edges.

70

the execution of the community-detection algorithm, to measure how well C† is hidden
in the new outcome of the algorithm. We set the number of rounds to be

⌈
|C†|
b

⌉
. In each

round, we disconnect d links from within C† (chosen uniformly at random), and then
connect b − d members of C† to b − d non-members of C† (again chosen uniformly at
random). Due to this randomness in our implementation, DICE may yield different results
in different executions. Therefore, we repeat each experiment 50 times, and report the
95% confidence interval. All datasets are described in Section 2.2.

Figure 5.6 shows the results of some of our experiments. As can be seen, DICE is able
to hide the group of evaders with varying levels of success, depending on the community-
detection algorithm being used. Importantly, the performance does not appear to be
overly-sensitive to the parameter d. This is important because it provides the members
of C† with the ability to control this parameter as needed (i.e., control the trade-off
between the number of internal links being removed, and the number of external links
being added). For example, the members of C† might be interested in hiding as much as
possible, while removing as few internal links as possible (after all, the added external
links are fake, serving no purpose other than disguising the group of evaders, whereas
the removed internal links are real; they existed within the group for a reason). In such
a case, since the addition of an external link is not entirely under the control of C†

(as it requires the consent of a non-member), the number of newly-added external links
may be insufficient for providing a satisfactory level of concealment, in which case the
members can compensate for this by sacrificing more internal links, i.e., by increasing
the parameter d.

Figures 5.7 and 5.8 illustrate the average value of our concealment measure, µ. In par-
ticular, each row represents a community-detection algorithm, each column represents a
network, and the intensity of the colour in each cell represents the average value of µ,
taken over 50 simulations, either by generating a new random network in each simu-
lation, or by re-running the simulation on the same real-life network (recall that the
DICE heuristic is non-deterministic, and may yield different results on the same net-
work). Columns and rows are sorted according to the increasing average value. As can
be seen, the Infomap [125] algorithm seems to be the most difficult to fool (see how the
row representing Infomap has, on average, the lightest colour shades). Interestingly, this
is also the algorithm that Lancichinetti and Fortunato [83] find to be the most effective
in practice.

All experimental results for the DICE heuristic are presented in Appendix B in Fig-
ures B.1, B.2, B.3, B.4 and B.5.

5.6 Concluding Remarks

In this chapter we introduced the subject of hiding communities in social networks. We
analysed how the modularity of a given community structure is affected by modifying the
network iteratively, where each modification involves the addition or removal of an edge.
We also proposed a measure of concealment, designed to quantify how well a group of
nodes is hidden in a given community structure. Moreover, we presented simple heuristic
that can realistically be applied by actual communities; it is scalable and does not require
any knowledge on the topology of the entire network, nor does it require any technical

71

Infomap

Betweenness

Walktrap

Spinglass

Louvain

Eigenvector

Greedy

Kar
at

e
clu

b

Ran
do

m
Gra

ph
(1

00
0,

10
)

Ran
do

m
Gra

ph
(1

00
,1

0)

Sca
leF

re
e(

10
00

,3
)

M
ad

rid
 b

om
bin

g

Bali
 a

tta
ck

Sca
leF

re
e(

10
0,

3)

Le
s M

ise
ra

ble
s

Gre
ek

 bl
og

s

W
TC 9

/1
1

Sm
all

W
or

ld(
10

0,
10

,.2
5)

Sm
all

W
or

ld(
10

00
,1

0,
.2

5)

Fa
ce

bo
ok

 (m
ed

ium
)

Fa
ce

bo
ok

(l
ar

ge
)

Fa
ce

bo
ok

 (s
m

all
) 0.0

0.2

0.4

0.6

Figure 5.7: Average concealment-measure value in each experiment for DICE with (b =
4, d = 0), where b is the budget in each execution, and d is the number of removed internal
edges.

knowledge or massive processing power. We evaluated the effectiveness of our heuristic
in both real-life and randomly-generated networks, using a wide variety of community-
detection algorithms.

We now describe a number of limitations.of our study. All of these limitations can
be considered potential venues of future research. First, in Section 5.3 we consider only
iterative changes of the network’s structure in order to minimize modularity. One might
investigate the effects of adding or removing multiple edges at once, and seek for optimal
algorithms of Minimizing Modularity with higher budget. We expect this to be an NP-
hard problem, however some effective heuristic solutions might be found.

Second, we considered a group of community detection algorithms realising one par-
ticular approach to community detection, i.e., finding community structures where each
node is a part of exactly one community. Nonetheless, there exists a whole body of litera-
ture on an alternative approach, i.e., one where we seek overlapping communities. Hiding
communities in such setting may give rise to new problems and research questions, e.g.,
considering the process of hiding from the perspective of a single node. Since each node
can be a part of multiple communities, a given member of the network might be interested
in being associated with a particular subset of communities. Alternatively, a node might
seek an optimal way to become a part of a chosen social circle.

Finally, we presented a heuristic solution that works surprisingly well against a wide
variety of community detection algorithms. However, some of them proved to be more
difficult to hide against than the others. A potential direction of future work is developing

72

Infomap

Walktrap

Betweenness

Spinglass

Eigenvector

Louvain

Greedy

Kar
at

e
clu

b

Ran
do

m
Gra

ph
(1

00
,1

0)

Sca
leF

re
e(

10
0,

3)

Sca
leF

re
e(

10
00

,3
)

Ran
do

m
Gra

ph
(1

00
0,

10
)

Bali
 a

tta
ck

Gre
ek

 bl
og

s

Le
s M

ise
ra

ble
s

M
ad

rid
 b

om
bin

g

Sm
all

W
or

ld(
10

0,
10

,.2
5)

W
TC 9

/1
1

Fa
ce

bo
ok

 (m
ed

ium
)

Sm
all

W
or

ld(
10

00
,1

0,
.2

5)

Fa
ce

bo
ok

(l
ar

ge
)

Fa
ce

bo
ok

 (s
m

all
)

0.2

0.4

0.6

Figure 5.8: Average concealment-measure value in each experiment for DICE with (b =
4, d = 4), where b is the budget in each execution, and d is the number of removed internal
edges.

specialized hiding algorithms, focusing on the community structure that will be returned
by a particular algorithm.

73

Chapter 6

Evading Link Prediction

In this chapter we investigate the problem of preventing identification of chosen edges
by link prediction algorithms. In what follows, we introduce the formal definition of the
problems, investigate its computational complexity, and provide simple heuristic solution
that can be run in polynomial time.

6.1 Introduction

One of the key research challenges in social network analysis is the link prediction prob-
lem [89, 94]. Intuitively, based on the current structure of the network, this problem
involves predicting the connections that are most likely to be created in the future. An
alternative interpretation of this problem is to identify the connections that are hidden
from the observer, either due to scarcity of data, or due to the deliberate concealment of
information [25]. Link prediction has many applications, such as providing recommenda-
tions to customers in e-commerce [37], discovering the interactions between proteins in
biological networks [26], and finding hidden connections between terrorists [5] or crimi-
nals [140].

A plethora of link prediction algorithms have been proposed in the literature (see
[89, 94, 6] for an extensive overview). In essence, the aim of all such algorithms is to
estimate the likelihood that there exists a not-yet-discovered edge between two seemingly-
disconnected nodes, or the likelihood that an edge will be formed between those two nodes
in the future [57]. The mainstream class of link-prediction algorithms is based on similarity
indices [94]. As the name suggests, such indices measure the similarity between any two
disconnected nodes in a network by analysing its topology. The underlying assumption
behind similarity-based algorithms is that the greater the similarity between two nodes,
the greater the likelihood of having a link between them.

If used with malicious or mischievous intent, social network analysis tools—and link
prediction algorithms in particular—may constitute a serious threat to both privacy and
security of the general public. Importantly, not only can such tools use the data that
has been willingly disclosed by its owners, but they can also use private data that has
not been disclosed at all. In particular, it has been shown that such private data can be
inferred from the publicly disclosed data, and that is by performing an attribute inference
attack. As the name suggests, such an attack infers the missing or partial attributes of
network nodes [159]. Mislove [103] showed that it is possible to infer otherwise-private

74

information about other Facebook users by analysing the topology of this social network
combined with the attributes of some users. It has been shown that the effectiveness of an
inference attack can be significantly improved if the attacker starts with a pre-processing
stage in which a link prediction algorithm is used to infer the missing links [81]. In this
chapter, we are particularly interested in a special type of such attacks, called the link
reconstruction attack, whereby a link prediction algorithm is used to identify missing or
hidden links [50].

Given such concerns, a number of studies recommended that social network users
conceal some of their attributes, as a countermeasure against attribute inference at-
tacks [90, 63]. Such recommendations include also concealing links. In this context, al-
though a number of studies in the literature have argued why there is a need to conceal
one’s private links, they unfortunately did not specify how this should be done.

Against this background, given a “seeker” who is running a link prediction algorithms,
and “evaders” who want to hide some of their connections, we study how the evaders can
make those connections harder for the seeker to identify. This research question matters
because, on one hand, it may assist the general public in protecting their privacy from
intrusion by private and public entities; on the other hand, it may mitigate (at least to
some extent) the threats posed by cyber criminals. It may also assist law-enforcement
agencies in understanding how criminals and terrorists could evade social network analysis
tools, especially given their increasing reliance on social-media survival strategies [109, 68].

The remainder of this chapter is organized as follows. Necessary notation and defi-
nitions are introduced in Section 6.2. After that, in Section 6.3, we formally introduce
the problem of Evading Link Prediction. We analyse its complexity in Section 6.4. In
Section 6.5 we propose our heuristic for Evading Link Prediction problem, and perform
its empirical evaluation. Concluding remarks follow in Section 6.6.

6.2 Preliminaries

Link prediction algorithms evaluate how likely it is that there exists a not-yet-discovered
edge between a pair of nodes or how likely it is to be formed in the future [57]. Many
link prediction algorithms are based on similarity indices, also called kernels [134]. More
formally, given a network G = (V,E), a similarity index is a function that assigns a score
to each non-edge in G, i.e., σ : Ē → R.

An important class of link prediction algorithms are local similarity indices, i.e.,
indices that account only for the direct network vicinity of the non-edge in question.
As such, the algorithms based on local similarity indices are typically computationally
tractable and can be used for efficient analysis of even large networks [94]. In this dis-
sertation, we study all local similarity indices for general networks presented in the
survey of Lü and Zhou [94]:1 Common Neighbours [106], Salton [128], Jaccard [65],
Sørensen [136], Hub Promoted [122], Hub Depressed [122], Leicht-Holme-Newman [85],
Adamic-Adar [4] and Resource Allocation [160]. Table 6.1 presents the defining for-
mula for each index. We denote the set of all those similarity indices by S, i.e., S =
{σCN, σSal, σJac, σSør, σHPI, σHDI, σLHN, σAA, σRA}.
1The only local index that we exclude from our analysis is the Preferential Attachment since it is

based on the assumption that the network has scale-free properties.

75

Index name Value

Common Neighbours σCN(v, w) = |N(v, w)|

Salton σSal(v, w) = |N(v,w)|√
δ(v)δ(w)

Jaccard σJac(v, w) = |N(v,w)|
|N(v)∪N(w)|

Sørensen σSør(v, w) = 2|N(v,w)|
δ(v)+δ(w)

Hub Promoted σHPI(v, w) = |N(v,w)|
min(δ(v),δ(w))

Hub Depressed σHDI(v, w) = |N(v,w)|
max(δ(v),δ(w))

Leicht-Holme-Newman σLHN(v, w) = |N(v,w)|
δ(v)δ(w)

Adamic-Adar σAA(v, w) =
∑
u∈N(v,w)

1
log(δ(u))

Resource Allocation σRA(v, w) =
∑
u∈N(v,w)

1
δ(u)

Table 6.1: Formulas of local similarity indices.

The value of all considered similarity indices increases with the number of common
neighbours of a pair of nodes. The main difference between the indices is the way the
number of common neighbours is scaled. Two of the indices, namely Adamic-Adar and
Resource Allocation, take into consideration also the degree of the common neighbours,
again, scaling it in different manners.

The most common ways of evaluating the performance of a similarity measure are Area
under Receiver Operating Characteristic curve (AUC) [48] and Area under Precision-
Recall curve (PR) [96] statistics. To compute either of these statistics for a similarity
index σ, we partition the set of edges E into two disjoint sets: the training set T and
the probe set H, i.e., T ∪ H = E and T ∩ H = ∅. Network (V, T) serves as an input
for similarity index σ, which produces the ranking of elements in H ∪ Ē. AUC and PR
statistics express the quality of this ranking with a single number.

In what follows, let σk denote the set of top k elements from H ∪ Ē in the ranking of
values of σ and let m = |H ∪ Ē|.

• Area under Receiver Operating Characteristic curve, denoted by AUC (E,H), for
given T and H is the area under the plot consisting of points:{(

|σk ∩ Ē|
|Ē|

,
|σk ∩H|
|H|

)}m
k=1

.

More intuitive interpretation of AUC (E,H) is that it is the probability that σ
assigns higher score to a randomly chosen edge from H than to a randomly chosen
non-edge from Ē (ties are broken at random). Let Q> ⊆ H × Ē denote the set of
pairs of edges where the edge from H has higher σ score than the edge from Ē, i.e.,

76

Q> = {(e1, e2) ∈ H × Ē : σ(e1) > σ(e2)}. Analogically, let Q= ⊆ H × Ē denote
the set of pairs of edges where the edge from H and the edge from Ē have equal σ
scores, i.e., Q= = {(e1, e2) ∈ H × Ē : σ(e1) = σ(e2)}. Now, we have:

AUC (E,H) =
1

|H||Ē|

(
|Q>|+ 1

2
|Q=|

)
.

• Area under Precision-Recall curve, denoted by PR(E,H), for given T and H is the
area under the plot consisting of points:{(

|σk ∩H|
|H|

,
|σk ∩H|

k

)}m
k=1

.

Since this value is not well-defined for plots that are not continuous, we use the
average precision estimator AP , described as one of the most robust by Boyd et
al. [22]. The value of AP is the average precision of a classifier predicting existence of
all edges that have higher value of σ than a chosen edge from H. Let W>(e0) denote
the edges from H ∪ Ē with σ scores higher than the score of e0, i.e., W>(e0) = {e ∈
H ∪ Ē : σ(e) > σ(e0)}. Let W=(e0) denote the edges from H ∪ Ē other than e0 with
σ scores equal to the score of e0, i.e., W=(e0) = {e ∈ (H∪ Ē)\{e0} : σ(e) = σ(e0)}.
Taking into account the possibility of equal scores, average precision value is:

AP(E,H) =
1
|H|

∑
e0∈H

|W>(e0) ∩H|+ 1 + 1
2 |W

=(e0) ∩H|
|W>(e0)|+ 1 + 1

2 |W=(e0)|
.

6.3 Problem Definition

In this section, we formally introduce the problem of Evading Link Prediction.

Definition 7 (Evading Link Prediction). This problem is defined by a tuple
(G, s, f,H, b, Â, R̂), where G = (V,E) ∈ G is a network, σ : Ē → R is a similarity index,
f ∈ {AUC ,AP} is a performance evaluation metric, H ⊂ E is the set of edges to be
hidden, b ∈ N is a budget specifying the maximum number of edges that can be modified
(i.e., added or removed), Â ⊆ Ē is the set of edges that can be added, and R̂ ⊆ E \ H
is the set of edges that can be removed. The goal is then to identify two sets of edges,
A∗ ⊆ Â and R∗ ⊆ R̂, such that the resulting set, E∗ = (E ∪ A∗) \R∗, is in:

arg min
E′∈{(E∪A)\R : A⊆Â, R⊆R̂, |A|+|R|¬b}

f(E ′, H).

Let us comment on the above definition. The goal is to find edges to be added and
edges to be removed from the network (taking into consideration sets Â and R̂, as well
as limited budget), such that the chosen set of edges H is well hidden. Our measure of
performance is lowering either Area under ROC curve or Average Precision statistic of
the ranking of the chosen similarity index σ.

Note that, from the perspective of the evaders, H is a subset of E. In contrast, from
the perspective of the seeker, we have H ⊆ Ē. We generally assume the point of view of
the evaders.

77

We introduced the sets Â and R̂ to model scenarios in which the evaders can only
modify the network in a limited manner. This could be the case, for example, when certain
connections are more costly to establish than others, or when the evaders want to avoid
removing certain critical edges, or avoid connecting to certain individuals. Likewise, we
introduced the “budget”, b, to model scenarios in which the evaders can only perform a
limited number of modifications.

We now move to the complexity analysis of the presented problem.

6.4 Complexity Analysis

In what follows, we prove that the problem of Evading Link Prediction is NP-complete for
all the similarity indices described in Section 6.2 and for both the AUC and AP metrics.
To this end, we need to first define a certain network, denoted by Γ(c, P), which will be
used later on in our NP-completeness proof.

Note that in the NP-completeness proof we use the universe U and the set of its
subsets S from the 3-Set Cover problem (as defined in Section 2.3.3) to construct the
network Γ(c, S).

Definition 8 (The Γ(c, S) Network). Let U = {u1, . . . , um} be a set of m elements, and
let S = {S1, . . . , Sq} be a cover of U containing q subsets that are each smaller than U .
That is, ∀iSi ⊂ U and

⋃
Si∈S Si = U . Then, given a constant, c ∈ N, the network Γ(c, P)

is created as follows:

• The set of nodes: For every Si ∈ S, we create a single node, denoted by Si.
Moreover, for every ui ∈ U , we create a node denoted by ui, c nodes denoted by
ai,1, . . . , ai,c, and q − |S(ui)| nodes denoted by di,1, . . . , di,q−|S(ui)|, where S(ui) =
{Sj ∈ S : ui ∈ Sj}. Finally, we create three nodes, v0, v1, and u0, as well as c
nodes, a0,1, . . . , a0,c, and q nodes, d0,1, . . . , d0,q.

• The set of edges: First, we create the edge (u0, v0). After that, for every Sj ∈ S
we create the edge (Sj, v1), as well as the edges (Sj, ui) for every ui ∈ Sj. Moreover,
for every ui ∈ U we create the edge (ui, v1), as well as the edges (ui, uj) for every
uj ∈ {ui+1, . . . , um} (this way, the nodes in {u0, . . . , um} form an (m + 1)-clique).
Furthermore, for every di,j we create the edges (di,j, ui) and (di,j, v1). Finally, for
every ai,j we create the edges (ai,j, ui), (ai,j, v0) and (ai,j, v1).

Figure 6.1 provides an illustration of the Γ(c, S) network. The following lemma is built
around this network.

Intuitively, the lemma claims that by adding to the network a set of edges correspond-
ing to the choice of a subset of S, we increase the σ scores of non-edges corresponding to
the covered elements of the universe U from the value equal to the score of (u0, v0) to the
value higher than the score of (u0, v0). Moreover, the relation of σ scores (i.e., whether
they are lower, equal, or higher) of all other non-edges to the score of (u0, v0) remains
the same.

Lemma 1. Consider the network (V,E) = Γ(c, S) for which m ­ 5 and |Si| = 3 for
all Si ∈ S. Let Â = {(Si, v0) : Si ∈ S}, and for every A ⊆ Â, let SA = {Si ∈ S :

78

...
...

𝑆𝑞

𝑆2

𝑆1

𝑣0

𝑣1

𝑎0,1

𝑎1,1

𝑎1,𝑐

𝑎𝑚,1

𝑎𝑚,𝑐

...

...

...

𝑢0
...

𝑑0,1

𝑑0,𝑞

𝑢1
𝑑1,1

𝑑1,𝑞−|𝑃(𝑢1)|

...

𝑑𝑚,1
𝑢𝑚

...

𝑑𝑚,𝑞−|𝑃(𝑢𝑚)|

𝑎0,𝑐
...

Figure 6.1: An illustration of the Γ(c, S) network. Edges connecting v1 with other nodes
are grayed out to improve readability. The red edge (u0, v0) is the one to be hidden.

(Si, v0) ∈ A}, and let SA(uj) = {Si ∈ SA : uj ∈ Si}. Furthermore, let ΓA denote a
set of all possible networks created by adding a subset of Â to the network (V,E), i.e.,
ΓA = {(V,E∪A) : A ⊆ Â}. For every similarity index, σ ∈ S, there exists some constant,
c ∈ N, such that:

(a) for every non-edge of the form (ui, v0) : i ∈ {0, . . . ,m} and for every network in ΓA
we have:

• σ(ui, v0) = σ(u0, v0) if SA(ui) = ∅, and

• σ(ui, v0) > σ(u0, v0) otherwise.

(b) for every non-edge, (Si, v0) : i ∈ {0, . . . , q} and for every network in ΓA where
(Si, v0) /∈ A we have:

• σ(Si, v0) < σ(u0, v0).

(c) for every other non-edge e ∈ Ē \ {(u0, v0), . . . , (um, v0), (S1, v0), . . . , (Sq, v0)} either:

• for every network in ΓA we have σ(e) > σ(u0, v0), or

• for every network in ΓA we have σ(e) = σ(u0, v0), or

• for every network in ΓA we have σ(e) < σ(u0, v0).

Proof. First, note that the following holds:

• for each Si and for every network in ΓA where (Si, v0) /∈ A we have N(Si, v0) = ∅;

79

• for each di,j and for every network in ΓA we have N(v0, di,j) = ∅.

This implies that for every similarity index, σ ∈ S, we have:

• for each Si and for every network in ΓA where (Si, v0) /∈ A we have σ(Si, v0) = 0;

• for each di,j and for every network in ΓA we have σ(v0, di,j) = 0.

One can also verify that for every σ ∈ S and for every network in ΓA it holds that
σ(u0, v0) > 0.

This implies that point (b) of the Lemma 1 holds, and that point (c) holds for every
non-edge of the form (v0, di,j). We still need to prove the correctness of point (a), as well
as the correctness of point (c) for every non-edge of the form:

(i) (v0, v1)

(ii) (ui, Sj) for ui /∈ Sj

(iii) (ui, aj,l) for i 6= j

(iv) (ui, dj,l) for i 6= j

(v) (Si, Sj) for i 6= j

(vi) (Si, aj,l)

(vii) (Si, dj,l)

(viii) (ai1,j1 , ai2,j2)

(ix) (ai1,j1 , di2,j2)

(x) (di1,j1 , di2,j2)

To this end, first note that the following holds for every network in ΓA and every ai,j,
di,j, Si in that network:

• δ(ai,j) = 3 (because ai,j is connected to v0, v1 and ui);

• δ(di,j) = 2 (because di,j is connected to v1 and ui);

• 4 ¬ δ(Si) ¬ 5 (because Si is connected to v1 and to every uj ∈ Si, where we
assumed that |Si| = 3; also, if Si ∈ A, then Si is connected to v0).

Also note that u0 /∈ Si for every Si ∈ S. Therefore, for each given A ⊆ Â, we have:
SA(u0) = 0. In what follows, we will use the aforementioned facts without referring back
to them.

Next, we present the proof for only one similarity index, namely Common Neighbours,
σCN, which simply counts the number of nodes that are neighbours to both v and w. The
proofs for all the similarity indices in S follow a similar reasoning and can be found in
Appendix C.

80

In particular, for σCN we choose network Γ(c, S) with c = 6. Then, to prove the
correctness of point (a) it suffices to note that for every network in ΓA we have:

∀uj∈{u0,...,um}σCN(uj, v0) = 6 + |SA(uj)|.

Moving on to point (c), note that for every network in ΓA we have σCN(u0, v0) = 6 and
that the following holds:

(i) σCN(v0, v1) = 6(m + 1) + |A| > σCN(u0, v0), because the common neighbours of u0

and v1 are all the nodes ai,j and all the nodes Si where (Si, v0) ∈ A.

(ii) σCN(ui, Sj) ¬ 4 < σCN(u0, v0), because the common neighbours of ui and Sj consist
of v1 and every ul ∈ Sj : l 6= i (note that we assumed that |Sj| = 3, and ui may or
may not be an element of Sj).

(iii) σCN(ui, aj,l) = 2 < σCN(u0, v0), because the common neighbours of ui and aj,l are
v1 and uj.

(iv) σCN(ui, dj,l) = 2 < σCN(u0, v0), because the common neighbours of ui and dj,l are
v1 and uj.

(v) σCN(Si, Sj) ¬ 5 < σCN(u0, v0), because the common neighbours of Si and Sj consist
of v1, and possibly v0 (if {(Si, v0), (Sj, v0)} ⊆ A), as well as the every element in
Si∩Sj (there can be at most 3 such elements, since we assumed that |Si| = |Sj| = 3,
and we place no restrictions on having Si = Sj).

(vi) σCN(Si, aj,l) ¬ 3 < σCN(u0, v0), because the common neighbours of Si and aj,l
consist of v1, and possibly v0 (if (Si, v0) ∈ A) and possibly uj (if i = j).

(vii) σCN(Si, dj,l) ¬ 2 < σCN(u0, v0), because the common neighbours of Si and dj,l
consist of v1 and possibly uj (if i = j).

(viii) σCN(ai1,j1 , ai2,j2) ¬ 3 < σCN(u0, v0), because the common neighbours of ai1,j1 and
ai2,j2 consist of v1 and v0 and possibly ui1 (if i2 = i1).

(ix) σCN(ai1,j1 , di2,j2) ¬ 2 < σCN(u0, v0), because the common neighbours of ai1,j1 and
di2,j2 consist of v1 and possibly ui1 (if i2 = i1).

(x) σCN(di1,j1 , di2,j2) ¬ 2 < σCN(u0, v0), because the common neighbours of di1,j1 and
di2,j2 consist of v1 and possibly ui1 (if i2 = i1).

This concludes the the proof of Lemma 1.

Having defined the Γ(c, S) network, and having proven the correctness of Lemma 1,
we are now ready to present our main theorem of this chapter.

The intuition behind the proof of this theorem is as follows. The values of AUC and
AP depend solely on the order of non-edges in the ranking of the similarity index, rather
than on the values of the said index. From Lemma 1 we know that the only change in
the ranking of the similarity index is that non-edges corresponding to covered elements of
the universe increase their similarity index values from equal to the value of the edge we

81

intend to hide, to higher than this value. Therefore, we show that the optimal solution that
minimizes the values of AUC and AP is the one that covers all elements of the universe,
hence the one corresponding to the optimal solution of the underlying Set Cover problem
instance.

Theorem 11. The problem of Evading Link Prediction is NP-complete for both AUC
(the Area under ROC curve) and AP (the Average Precision), and for every similarity
index in S, i.e., Common Neighbours, Salton, Jaccard, Sørensen, Hub Promoted, Hub
Depressed, Leicht-Holme-Newman, Adamic-Adar and Resource Allocation.

Proof. The problem is trivially in NP, since computing AUC and AP before and after the
addition of a given set of edges A∗ ⊆ Â and the removal of a given set of edges R∗ ⊆ R̂
can be done in polynomial time for every similarity index in S.

Next, we prove that the problem is NP-hard. To this end, we give a reduction from
the NP-complete 3-Set Cover problem, as defined in Section 2.3.3 To remind the reader,
U = {u1, . . . , ul} denotes the universe, S = {S1, . . . , Sm} denotes the set of subsets of the
universe, and the goal is to determine whether there exist k elements of S the union of
which equals U .

Let us assume that m ­ 5, as all other cases can be easily solved in polynomial time.
Now, for any given similarity index, σ ∈ S, consider the following instance of the

problem of Evading Link Prediction (G, σ, f,H, b, Â, R̂), where:

• G = (V,E) = Γ(c, S), where c ∈ N is chosen to be a constant that satisfies Lemma 1
(the lemma states that such a constant exists);

• σ is the similarity index under consideration;

• f is either the AUC or the AP metric;

• H = {(u0, v0)};

• b is the parameter of the 3-Set Cover problem (where the goal is to determine
whether there exist b elements of S the union of which equals U);

• Â = {(Si, v0) : Si ∈ S};

• R̂ = ∅.

Let us also introduce the following notation:

• Υ<(G) = {e ∈ Ē : σ(e) < σ(u0, v0)} in network G;

• Υ=(G) = {e ∈ Ē : σ(e) = σ(u0, v0)} in network G;

• Υ>(G) = {e ∈ Ē : σ(e) > σ(u0, v0)} in network G.

Observe that Ē is the set of non-edges in (V,E), whereas Ē \A is the set of non-edges
in a network of the form (V,E∪A). For every network of the form G′ = (V,E∪A) where
A ⊆ Â, we know from the definition of AUC in Section 6.2 that:

82

AUC (E ∪ A,H) =
|Υ<(G′)|+ 1

2 |Υ
=(G′)|

|Ē \ A|
. (6.1)

We also know from the definition of AP in Section 6.2 that:

AP(E ∪ A,H) =
1

|Υ>(G′)|+ 1 + 1
2 |Υ=(G′)|

. (6.2)

Now, let UA = {ui : ∃Sj∈SAui ∈ Sj}. Point (b) of Lemma 1 implies that:

|Υ<(G′)| = |Υ<(G)| − |A|. (6.3)

On the other hand, point (a) of Lemma 1 implies that:

|Υ=(G′)| = |Υ=(G)| − |UA|, (6.4)

as well as:

|Υ>(G′)| = |Υ>(G)|+ |UA|, (6.5)

Equations (6.1), (6.3) and (6.4) imply that:

AUC (E ∪ A,H) =
|Υ<(G)| − |A|+ 1

2(|Υ=(G)| − |UA|)
|Ē| − |A|

(6.6)

On the other hand, equations (6.2) and (6.5) imply that:

AP(E ∪ A,H) =
1

|Υ>(G)|+ |UA|+ 1 + 1
2(|Υ=(G)| − |UA|)

(6.7)

that gives us:

AP(E ∪ A,H) =
1

|Υ>(G)|+ 1 + 1
2(|Υ=(G)|+ |UA|)

. (6.8)

Equations (6.6) and (6.8) imply that both AUC and AP decrease with |UA|. Thus,
for each of these two metrics an optimal choice of A is one that maximizes |UA|. This
happens when UA = U . For any choice of A such that UA = U , the following holds:
∀uj∈U∃(Si,v0)∈Auj ∈ Si. Such an optimal choice of A constitutes a solution to the problem
of Evading Link Prediction where R̂ = ∅. It also corresponds directly to a solution to the
3-Set Cover problem.

Having proven the NP-completeness of the problem of Evading Link Prediction, in
the following section we propose an efficient heuristic solution, designed to work well in
practice.

6.5 Heuristic Solution

Since finding the optimal solution to the problem of Evading Link Prediction turned out
to be intractable, we now focus our efforts on developing heuristic solutions that can be
computed in polynomial time. Our heuristic algorithms are based on our analysis of how
adding or removing a single edge affects the scores of non-edges.

83

6.5.1 The Effects of Adding or Removing an Edge

By looking at the formulae of the different similarity indices in S (see Table 6.1), one can
see that the score of every non-edge, (v, w) ∈ Ē, depends solely on the following:

(i) the number of common neighbours of both ends of the non-edge. More formally,
σ(v, w) depends on |N(v, w)|. This observation affects every similarity index in S.
More precisely, for every σ ∈ S, the score σ(v, w) increases with |N(v, w)|;

(ii) the degree of each end of the non-edge, but only if both ends have at least one
common neighbour. More formally, σ(v, w) depends on δ(v) and δ(w) ifN(v, w) 6= ∅.
This observation does not affect the similarity indices σCN (Common Neighbours),
σAA (Adamic-Adar) and σRA (Resource Allocation). As for every other similarity
index, i.e., σ ∈ S \ {σCN, σAA, σRA}, the score σ(v, w) decreases with δ(v) and δ(w)
if N(v, w) 6= ∅.2

(iii) the degree of every common neighbour of the non-edge. More formally, σ(v, w) de-
pends on δ(x) : x ∈ N(v, w). This observation only affects the indices σAA (Adamic-
Adar) and σRA (Resource Allocation). To be more precise, for σ ∈ {σAA, σRA}, the
score σ(v, w) decreases with δ(x) : x ∈ N(v, w).

Based on the above three observations, the addition of an edge (u1, u2) can only affect
the scores of three types of non-edges:

1. A non-edge (u1, x) : x ∈ N(u2) \ N(u1) (such a non-edge is affected by the addi-
tion of (u1, u2), which adds a new common neighbour of x and u1, namely u2), or
analogously a non-edge (u2, x) : x ∈ N(u1) \ N(u2). For every such non-edge, the
addition of (u1, u2) increases every σ ∈ S, see observation (i).

2. A non-edge (u1, x) : N(u1, x) 6= ∅ (such a non-edge is affected by the addition
of (u1, u2), which increases the degree of one end of the non-edge, namely u1), or
analogously a non-edge (u2, x) : N(u2, x) 6= ∅. For every such non-edge, the addition
of (u1, u2) decreases every σ ∈ S \ {σCN, σAA, σRA}, see observation (ii).

3. A non-edge (x, y) : x, y ∈ N(u1) (such a non-edge is affected by the addition of
(u1, u2), which increases the degree of a common neighbour of x and y, namely
u1), or analogously a non-edge (x, y) : x, y ∈ N(u2). For every such non-edge, the
addition of (u1, u2) decreases every σ ∈ {σAA, σRA}, see observation (iii).

Conversely, the removal of an edge, (u1, u2), can only affect the scores of:

1. A non-edge (u1, x) : x ∈ N(u2) \N(u1), or a non-edge (u2, x) : x ∈ N(u1) \N(u2).
For every such non-edge, the removal of (u1, u2) decreases every σ ∈ S.

2. A non-edge (u1, x) : N(u1, x) 6= ∅, or a non-edge (u2, x) : N(u2, x) 6= ∅. For every
such non-edge, the removal of (u1, u2) increases every σ ∈ S \ {σCN, σAA, σRA}.

2Regarding σJac note that: |N(v) ∪N(w)| = δ(v) + δ(w)− |N(v, w)|.

84

3. A non-edge (x, y) : x, y ∈ N(u1), or a non-edge (x, y) : x, y ∈ N(u2). For every such
non-edge, the removal of (u1, u2) increases every σ ∈ {σAA, σRA}.

Figure 6.2 illustrates a sample network, where the dashed edges are non-edges (i.e.,
they do not belong to the sample network) whose scores may change as a result of adding
the edge (u1, u2).

𝑢1 𝑢2

Figure 6.2: A sample network whose edges are drawn as solid lines, along with the non-
edges whose scores may change as a result of adding the edge (u1, u2) drawn as dashed
lines.

In the following subsections, we use the above observations as corner stones based on
which we build our heuristic algorithms.

6.5.2 The OTC Heuristic

Based on our analysis in the previous section, we propose a heuristic algorithm that
“hides” the edges in H by increasing the similarity scores of the non-edges in Ē. This
way, if the seeker were to run a link-prediction algorithm, whereby all the non-edges in
Ē are ranked according to some similarity index, then our heuristic would increase the
ranking of the non-edges in Ē, thereby reducing the likelihood that a non-edge e ∈ H is
discovered.

by adding this edge

this edge becomes
more hidden (as 𝛿(𝑤)

increases)

𝑢𝑥

an edge in 𝐻

𝑤

𝑣

𝑢𝑥 𝑤

𝑣

edges in 𝐸\𝐻

we increase the values of 𝑁 𝑤, 𝑥 and |𝑁 𝑤, 𝑦 |

𝑦𝑦

Figure 6.3: An illustration of the main idea behind the OTC heuristic.

In particular, we propose what we call the Open-Triad-Creation (OTC) algorithm,
which is based on adding edges to the network. The purpose behind every such addition
is to increase the number of open triads, thereby increasing the number of common
neighbours of the missing edge in each such triad. The rationale comes from the fact

85

that by increasing the number of common neighbours of a non-edge, its score increases
according to every similarity index in S (see Section 6.5.1). Moreover, every time an edge
is added to the network, the degree of each end increases. Now if any such end, w ∈ V ,
happens to also be an end of some edge (w, u) ∈ H, then the increase in δ(w) would
decrease the score of (w, u) according to every similarity index in S \ {σCN, σAA, σRA}
(again see Section 6.5.1). An example is illustrated in Figure 6.3.

Algorithm 4 The Open-Triad-Creation (OTC) algorithm

Input: A network (V,E), a budget b ∈ N, a set of edges that can be added Â ⊆ Ē, and
a set of edges to be hidden H ⊂ E.

Output: Updated network (V,E).
1: A′ ←

{
(v, w) ∈ Â :

(
∃u ∈ N(v) : (u, v) ∈ H

)
∨
(
∃u ∈ N(w) : (u,w) ∈ H

)}
2: for i = 1, . . . , b do
3: for (v, w) ∈ A′ do
4: if ∃u∈V ((v, u)∈E \H ∧ (w, u)∈H) ∨ ((w, u)∈E \H ∧ (v, u)∈H) then
5: θ(v,w) ← −∞
6: else
7: θ(v, w)←

∣∣∣(N(V,E\H)(v) ∪ N(V,E\H)(w)
)
\N(V,E\H)(v, w)

∣∣∣
8: (v∗, w∗)← arg max(v,w)∈A′ θ(v, w)
9: if θ(v∗, w∗) > −∞ then

10: E ← E ∪ (v∗, w∗)

The pseudo-code of the heuristic is presented in Algorithm 4. Specifically, in Line 1
out of all the non-edges that can be added (i.e., all the edges in Â), the algorithm narrows
the search to only the subset A′ ⊆ Â in which every non-edge has at least one end that
belongs to some edge in H. In lines 3 to 7, the algorithm computes for every non-edge
(v, w) ∈ A′ a score θ(v,w) which reflects the gain from adding (v, w) to the network. Here,
in lines 4 and 5 the algorithm ensures that we do not increase the number of common
neighbours of some edge in H. Line 7 is responsible for counting the non-edges whose
number of common neighbours will increase as a result of adding (v, w). In lines 8 to 10
we choose the non-edge with the highest score and add it to the network. This entire
process is repeated until the budget b runs out.

The complexity of a naive implementation of OTC is O(b|H||V |2). In more detail,
computing score θ(v,w) for each non-edge (v, w) ∈ A′ can be done in time linear in |V | for
each of the |H||V | non-edges. Searching for a non-edge in A′ with the maximal score takes
b|H||V | operations. Finally, updating the scores after adding each of the b edges can be
done in time linear in |V |. In Appendix D we show a more efficient (although less intuitive)
implementation with complexity O(|H||V |2 +b|H||V |) or O(|H||V |2 +b|V | log(|V |)) when
using a priority queue.

6.5.3 The CTR Heuristic

We now propose an alternative heuristic that focuses on decreasing the scores of the
edges in H rather than on increasing the scores of the non-edges in Ē (which was the
case with OTC). In particular, we propose what we call the Closed-Triad-Removal (CTR)

86

algorithm, which is based on removing edges from the network (unlike OTC, which was
based on adding edges). The purpose behind every such removal is to decrease the number
of closed triads that contain edges from H, thereby decreasing the number of common
neighbours of (v, w). The rationale comes from the fact that by decreasing the number of
common neighbours of (v, w), its score decreases according to every similarity index in
S (see Section 6.5.1). However, this comes at a cost; it reduces the degree of one end of
(v, w), which increases its score according to every similarity index in S\{σCN, σAA, σRA}.
An example is presented in Figure 6.4.

𝑣

by removing this edge

we decrease
the |𝑁(𝑣, 𝑤)| value

𝑤𝑢

an edge in 𝐻

𝑣

an edge in 𝐸\𝐻

an edge in 𝐸\𝐻

𝑤𝑢

Figure 6.4: An illustration of the main idea behind the CTR heuristic.

The pseudo-code of the CTR heuristic is given in Algorithm 5. Specifically, in Line 1,
out of all the edges that can be removed (i.e., all the edges in R̂), the algorithm narrows
the search to only the subset R′ ⊆ R̂ in which every edge has at least one end that belongs
to some edge in H. After that, in lines 3 to 9, the algorithm computes for every edge
(x, y) ∈ R′ a score θ(x,y) which reflects the gain from removing (x, y) from the network.
This is done by simply counting the number of closed triads that contain (x, y) and two
other edges, one of which is in H. The edge with the greatest gain is chosen in line 10,
and removed from the network in line 12.

The complexity of a naive implementation of CTR (which uses a hash table) is
O(b|H||V |). This is because for every (v, w) ∈ H the algorithm considers updating
the score of every (v, u) : u ∈ N(v) (there are at most |V | such edges) and every
(w, u) : u ∈ N(w) (again there are at most |V | such edges). This process is repeated
b times.

Notice that when |H| = ω(log(|V |)), an implementation using a priority queue is
faster, with a complexity of O(|H||V | + b|V | log(|H||V |)). Such an implementation can
be found in Appendix E.

6.5.4 Experimental Design

We now describe experiments performed with OTC and CTR heuristics. They are de-
signed to assess the efficiency of our heuristics in hiding a chosen set of edges.

Setting of every experiment consists of a network, a link prediction algorithm, and a
set of edges to be hidden, H. The network is either randomly generated using a certain
model, or taken from our dataset of real-life networks. The algorithm is based on one of
the similarity indices in S (see Section 6.2 for a formal definition of these indices). The

87

Algorithm 5 The Closed-Triad-Removal (CTR) algorithm

Input: A network (V,E), a budget b ∈ N, a set of edges that can be removed R̂ ⊆ Ē,
and a set of edges to be hidden H ⊂ E.

Output: Updated network (V,E).
1: R′ ←

{
(v, w) ∈ R̂ :

(
∃u ∈ N(v) : (u, v) ∈ H

)
∨
(
∃u ∈ N(w) : (u,w) ∈ H

)}
2: for i = 1, . . . , b do
3: for (x, y) ∈ R′ do
4: θ(x,y) ← 0

5: for (v, w) ∈ H do
6: for u ∈ N(v, w) do
7: if (v, u) ∈ E \H ∧ (w, u) ∈ E \H then
8: if (v, u) ∈ R′ then θ(v,u) ← θ(v,u) + 1

9: if (w, u) ∈ R′ then θ(w,u) ← θ(w,u) + 1

10: (v∗, w∗)← arg max(v,w)∈R′ θ(v,w)

11: if θ(v∗,w∗) > 0 then
12: E ← E \ (v∗, w∗)

set of edges to be hidden, i.e., H, consists of 10% of network’s edges, chosen uniformly
at random (we chose 10% as it is a typical size of the probe set when evaluating link
predication algorithms [158, 94]). Finally, we run either OTC or CTR heuristc algorithm,
with the budget being b = |H|. In each step of the algorithm, i.e., at the end of every
iteration in the main loop, we record the value of the AUC and AP metrics. Each such
experiment is repeated 50 times, and the average results are reported along with the 95%
confidence intervals.

6.5.5 Simulation Results

Figures 6.5 and 6.6 presents the relative change in the AUC and AP value during the
execution of the heuristics (results are shown for only some of the networks under con-
sideration; the remaining results can be found in Appendix F in Figures F.1, F.2, F.3,
F.4, F.5, F.6, F.7, F.8, F.9 and F.10. Every point in a subplot represents the average of
50 simulations, with coloured areas representing the 95% confidence intervals. As can be
seen, the heuristics are able to reduce the AUC and AP values, with varying levels of
success.

Figures 6.7, 6.8, 6.9, and 6.10 evaluate the resilience of each algorithm given different
networks and different heuristics, in terms of AUC and AP . More specifically, in each
figure columns represent algorithms, rows represent networks, and the color of each cell
represents the relative change in the evaluation metric (be it AUC or AP) after running
one of our heuristics (be it OTC or CTR). The color represents the average result taken
over 50 experiments. The darker the color, the more effective our heuristic turns out to
be. Rows and columns are sorted ascendingly based on the sum of the values therein.
As can be seen, the degree to which an algorithm can be fooled depends heavily on the
heuristic being used. For example, the similarity index Leicht-Holme-Newman[85], is the
easiest to fool when using the OTC, but the hardest to fool when using CTR.

88

M
ad

ri
d

bo
m

bi
ng

0.95

0.96

0.97

0.98

0.99

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Sc
al

eF
re

e(
10

0,
3)

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Fa
ce

bo
ok

(m
ed

iu
m

)

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure 6.5: The Area under the ROC curve (AUC) and the Average Precision (AP) during
the execution of OTC. Results are shown for an average of 50 executions, coloured areas
representing the 95% confidence intervals.

89

M
ad

ri
d

bo
m

bi
ng

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Sc
al

eF
re

e(
10

0,
3)

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Fa
ce

bo
ok

(m
ed

iu
m

)

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure 6.6: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of CTR. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

90

SmallWorld(1000,10,.25)
Facebook (small)
Madrid bombing
WTC 9/11
Facebook (large)
SmallWorld(100,10,.25)
Bali attack
Facebook (medium)
Les Miserables
Greek blogs
ScaleFree(1000,3)
Karate club
ScaleFree(100,3)
RandomGraph(100,10)
RandomGraph(1000,10)

Le
ich

t−
Holm

e−
New

m
an

Hub
 D

ep
re

ss
ed

Sor
en

se
n

Ja
cc

ar
d

Salt
on

Hub
 P

ro
m

ot
ed

Com
m

on
 N

eig
hb

ou
rs

Ada
m

ic−
Ada

r

Res
ou

rc
e

Allo
ca

tio
n

0.75

0.80

0.85

0.90

0.95

Figure 6.7: Relative changes in the AUC
values after running the OTC heuristic.

Facebook (small)
Bali attack
Madrid bombing
RandomGraph(100,10)
RandomGraph(1000,10)
Karate club
WTC 9/11
ScaleFree(100,3)
Les Miserables
SmallWorld(1000,10,.25)
SmallWorld(100,10,.25)
ScaleFree(1000,3)
Facebook (medium)
Greek blogs
Facebook (large)

Le
ich

t−
Holm

e−
New

m
an

Hub
 D

ep
re

ss
ed

Salt
on

Ja
cc

ar
d

Sor
en

se
n

Hub
 P

ro
m

ot
ed

Com
m

on
 N

eig
hb

ou
rs

Ada
m

ic−
Ada

r

Res
ou

rc
e

Allo
ca

tio
n

0.2

0.4

0.6

0.8

Figure 6.8: Relative changes in the AP val-
ues after running the OTC heuristic.

Facebook (large)
Facebook (medium)
RandomGraph(1000,10)
Facebook (small)
ScaleFree(1000,3)
Les Miserables
Bali attack
Greek blogs
SmallWorld(1000,10,.25)
Madrid bombing
SmallWorld(100,10,.25)
ScaleFree(100,3)
WTC 9/11
Karate club
RandomGraph(100,10)

Com
m

on
 N

eig
hb

ou
rs

Hub
 P

ro
m

ot
ed

Ada
m

ic−
Ada

r

Res
ou

rc
e

Allo
ca

tio
n

Salt
on

Sor
en

se
n

Ja
cc

ar
d

Hub
 D

ep
re

ss
ed

Le
ich

t−
Holm

e−
New

m
an

0.6

0.7

0.8

0.9

Figure 6.9: Relative changes in the AUC
values after running the CTR heuristic.

RandomGraph(1000,10)
ScaleFree(1000,3)
RandomGraph(100,10)
ScaleFree(100,3)
Bali attack
Karate club
Facebook (small)
Facebook (large)
Facebook (medium)
Les Miserables
Madrid bombing
Greek blogs
WTC 9/11
SmallWorld(100,10,.25)
SmallWorld(1000,10,.25)

Com
m

on
 N

eig
hb

ou
rs

Ada
m

ic−
Ada

r

Res
ou

rc
e

Allo
ca

tio
n

Salt
on

Sor
en

se
n

Ja
cc

ar
d

Hub
 D

ep
re

ss
ed

Hub
 P

ro
m

ot
ed

Le
ich

t−
Holm

e−
New

m
an

0.2

0.4

0.6

0.8

Figure 6.10: Relative changes in the AP val-
ues after running the CTR heuristic.

6.6 Concluding Remarks

In this chapter, we introduced and analysed the problem of Evading Link Prediction. We
proved that this problem is NP-complete for nine local link prediction algorithms that
are widely studied in the literature. Given these hardness results, we focused our efforts
on developing scalable heuristics that can be applied by members of the general public.
The heuristics do not require any involved technical knowledge nor massive processing
power, and can readily be implemented on existing social media.

91

Our work should be treated as the first step towards a more advanced analysis of
evading link prediction algorithms. We now discuss some of the assumptions we made
and describe how changing them may lead to potential future work on the subject.

We limited our analysis to local similarity indices, as the most tractable class of link
prediction algorithms that are viable for massive social networks. However, analyser with
either massive computational power, or interest only in networks of limited size, might
also use other types of link prediction algorithms, such as global and semi-local indices,
as well as probabilistic models [94]. We identify developing tools for evading this more
general class of algorithms as one of possible directions for future work. It’s worth noticing
that since Evading Link Prediction problem turned out to be NP-complete even for local
similarity indices, more complex analysis methods will probably prove at least as much
computationally challenging.

Both of our heuristic solutions focus either only or adding edges (in case of the OTC
algorithm), or only on removing edges (in case of the CTR algorithm). It might be
beneficial to design a heuristic algorithm that makes use of both of those actions. This
way potential loss in communication efficiency caused by removing edges from the network
can be compensated by creating new connections in another place. At the same time, such
a heuristic might result in network modifications that seem more natural, while strategy
that only adds edges to the network in the vicinity of hidden connections might actually
draw unwanted attention to them.

Other potential venues of expanding presented work include developing settings in
which analyser is aware of attempts to hide some of the edges and might take into
consideration history of the network structure (not only snapshot of current connections,
as we assume in this chapter), as well as analysing networks where nodes have additional
attributes, that can indicate their similarity (e.g., political views). As already shown by
Bird et al. [17], this type of additional data can be used to reveal personal information
that is otherwise confidential.

92

Chapter 7

Conclusions

In this dissertation we considered various aspects of hiding in social networks and pre-
venting detection by social network analysis tools. In Chapter 3 we analysed the problem
of reducing one’s centrality in a network. However, since simply being connected to a
network is not necessarily enough to participate in the activities of the organization in
an efficient way, we set additional goal of preserving one’s influence on the network. The
posed computational problems proved to be intractable, hence finding an optimal solution
would be an extremely demanding task. To solve this conundrum we provided a heuristic
solution that turns out to be surprisingly effective in practice in a vast majority of consid-
ered scenarios. The main goal in Chapter 4 was to prevent detection of a group of leaders
of a social network by a centrality measure, i.e., to ensure that no leader would appear
in top positions of the centrality’s ranking. Again, computational problems turned out
to be NP-hard. Notably, this time even considering the simplest centrality measure, i.e.,
degree centrality, did not make the problem tractable. However, we successfully designed
an easy to build and maintain network structure that provides a group of leaders with
low positions in centrality rankings, as well as efficient contact with each other and with
the rest of the network. In Chapter 5 we investigated the matter of hiding a group of
nodes from a different perspective, i.e., we considered the problem of avoiding detection
by a community detection algorithms. To evaluate the quality of hiding, we introduced
the first measure of how well a group of nodes is concealed within a given community
structure. The measure incorporates two notions of hiding, i.e., distributing members
of the group across many communities and hiding in the crowd. We used the measure
to show effectiveness of a surprisingly simple heuristic that allows a group of nodes to
improve their concealment with ease. In Chapter 6 we analysed the issue of preventing
detection of a certain set of edges by link prediction algorithms. Again, the problem
turned out to be NP-hard from the computational point of view, even when considering
a very simple class of link prediction algorithms, i.e., local similarity indices. However,
also in this case we developed polynomial time heuristic solutions that allow to hide a
chosen set of edges. Contrary to simple intuition, our algorithms worked well even in a
setting without complete information.

The following main conclusions can be drawn based on our analysis. Firstly, when con-
sidered from the point of view of computational complexity theory, most hiding problems
turn out to be NP-hard. Consequently, finding an optimal solution to a given instance
is a computationally intensive task, and cannot be effectively solved for most networks.

93

In many cases even for simplest social network analysis tools, such as degree centrality
and common neighbours similarity index, considered problems prove to be intractable
(see Theorems 5 and 11). It suggests that hardness of the hiding questions is the result
of a structure of the problem itself, and not only of the complexity of the social network
analysis tools that we try to evade. Since in all considered settings we aimed to use the
most basic tools (that can be used even to analyse massive social networks), we expect
the problems of hiding from more complex social network analysis techniques to be even
less tractable.

Secondly, even though the conclusion drawn in the previous paragraph may suggest
that the network analysers have nothing to be worried about, this is certainly not the case.
For every considered problem we managed to find a simple polynomial-time heuristic so-
lution that turned out to be effective in practice, for both artificial and real-life datasets.
Each of these algorithms takes into account several factors that are crucial while devel-
oping solutions that are implementable in practice. Our heuristic solutions do not need
complete knowledge about entire structure of the network, as such information is rarely
available in practice. Typically, we only know the structure of our direct network vicin-
ity, i.e., connections of our neighbours and sometimes neighbours of our neighbours. Our
heuristic algorithms do not require extensive computations, i.e., they are all polynomial
time (for low-ordered polynomials). As real-life network can be massive, it is important to
develop solutions that do not require extensive computational power. Most of our heuris-
tic solutions are also simple enough that they can be used even by lay people, without
specialized knowledge about algorithm design. Consequently, they can be implemented by
any social media users. All things considered, even though finding the optimal solutions
to the hiding problems is a very hard task from a computational point of view, coming
up with a solution that provides an acceptable level of concealment is often relatively
straightforward.

Third conclusion that can be drawn from this dissertation is the need to extend the
approaches used to analyse social networks, especially when considering the dark net-
works. Nearly all social network analysis tools treat the nodes of the network as oblivious
entities. While this might be true in many cases, when considering criminal and terrorist
organizations, their members have clear incentive to falsify the results of the analysis.
As we have shown in this dissertation, this goal can be achieved even with relatively
simple means, e.g., by modifying the structure of connections between members of the
organization or by reorganizing its communication channels. This indicates, that when
performing the analysis on this particular type of networks, nodes should be considered
as strategic players. Since today’s criminal and terrorist organizations are aware of being
under constant surveillance, they can modify their behaviour in order to minimize the
damage. This possibility should be brought to attention of police forces and intelligence
agencies utilizing social network analysis tools.

Fourth conclusion is the need to develop new social network analysis tools, that are
aware of the potential attempts to avoid and falsify the analysis. This dissertation de-
scribes flaws of many of the currently used techniques and risks that are the result of
commonly accepted assumptions. Next generations of social network analysis tools should
adapt to the fact that their object of analysis is not static and unaware of their existence.
One of possible ways to achieve this, is developing techniques taking into account more
than just the structure of connections between network members, but also specific infor-

94

mation about each of them. While current software is usually just visualising this type of
data, its usage should be built into analytic algorithms. This may lead to more effective
analysis of dark networks and, as a result, more effective ways of fighting criminal and
terrorist organizations.

We now describe a number of limitations of our study. First limitation is that even
though we consider the evader who is strategic, the analyser of the network is still not. We
believe that such a setting accurately describes the current use of social network analysis
tools. More often than not, they are applied without any consideration of the possible
reaction of the analysed network’s members. Hence, we investigate possible strategies of
the evaders, while we assume that the action of the analyser is fixed, i.e., she is only using
a particular social network analysis tools. Our work should be treated as a first step in a
more advanced analysis of the problem of hiding in social networks. The next step should
be introducing strategic analyser, who is aware that evaders may intend to falsify the
results of the analysis. Approach to this kind of problems should be more game-theoretic,
possibly similar to the Stackelberg games (Leader-Follower models).

Second limitation is the number and nature of considered real-life network datasets.
Unfortunately, there is a very limited number of dark networks datasets that are available
to the public. Further, many of them contain fairly few nodes, representing only a single
cell, in which case it is difficult to obtain significant simulation results. Others are massive
networks, composed of many different organizations, where computing evaluative char-
acteristics presented as part of results, e.g., influence values, is an extremely demanding
computational task. In our simulations we used a variety of dark networks, ranging from
small-scale (9/11 terrorist network), to medium-sized organizations (Madrid bombing
network). We also performed tests on other real-life networks, such as fragments of social
media networks (Facebook, Twitter, Google Plus) and artificially generated datasets, to
provide a wide variety of tested subjects. Another problem is the nature of datasets, in
that most of them consist only of the network structure. There are very few available
datasets containing information about nodes that can be used as input for social network
analysis tools. Hence, in our simulations we used techniques that require only connections
between nodes to perform analysis.

Third limitation is the range of considered social network analysis tools. In all chapters
we intended to apply the most widely used techniques. It turns out that it is usually the
simplest class that is the most popular and investigated in the literature. Part of the
reason is that it enables the user to analyse even large networks. While dark networks
with a few dozen nodes are a viable subject of analysis, datasets based on social media
sites often consist of thousands or tens of thousands of nodes. In such cases, tools that
are used to analyse the networks have to be both effective and computationally tractable.
It may turn out that more complicated social network analysis techniques are also more
difficult to evade. However, due to their limited use in case of larger networks, we decided
to concentrate on more popular and simpler tools, leaving the analysis of their more
advanced counterparts as a possible venue of future work.

We now describe other possible directions of future work. In this dissertation we
considered the problem of hiding from three different social network analysis tools, namely
centrality measures, community detection algorithms, and link prediction algorithms.
However, there exists a plethora of other kinds of tools and algorithms, the evasion of
which can be potentially beneficial for analysed parties. Good example is the class of role

95

assignment algorithms that recognize role that each node plays in an organization. This
is yet another way to identify key nodes in the network, and falsifying its results may be
of interest to the ringleaders of various organizations for the same reasons that we listed
for centrality measures. Another potential objects of analysis are network comparison
measures that express similarity between network structures. Dark networks may wish
to appear less like other criminal and terrorist organizations to avoid being classified as
one. Other networks may wish to hide their true robustness, or to strategically falsify
values of other network statistics, such as eccentricity, communication cost, or clustering
coefficient.

Another potential venue of future work is investigating the hiding problems in different
types of networks. One of those types is the class of multi-layered networks. If examined
more closely, our social connections can be actually divided into many categories, e.g.,
accordingly to the platform of communication (face-to-face meetings, telephone conver-
sations, different types of social media), nature of relation (blood relatives, associates,
casual acquaintances), or time frame of contacts. Such a distinction can be modelled as
a network with multiple layers. This adds another dimension to the problems of hiding.
Examples of research questions are how should one distribute the budget of network
modifications among the layers (is it more beneficial to focus on a single layer, or rather
make small changes in each of them), or does considering multiple layers make hiding
easier or more complicated (as analyser has to choose one of the multiple possible ways
of implementing social network analysis tools for multi-layered networks).

Another potential question is the analysis of dynamic networks. In this dissertation we
consider static network structure, i.e., we assume that analyser performs her activities
on a snapshot of a social network in a given moment. We showed that in this setting
identification of nodes that intend to hide is an extremely demanding task. Potential
hope for analyser is considering the history of changes in networks structure, i.e., a
dynamic version of the network. Since many edge modifications being part of hiding
process happen locally, the analyser may focus her efforts on areas of the network with
many changes, thus making it easier to identify hiding entities. At the same time, time
dimension of the domain allows to design even more complex hiding strategies, where
edge changes are intentionally distributed over long time or performed further away in
the network to avoid suspicions.

Different type of networks (although somewhat similar to the dynamic networks) are
the temporal networks. Edges of temporal network are active only in particular periods
of time, e.g., may represent a history of contacts between organisation members. Hiding
problems in such a network give yet another dimension of complexity, with possible actions
including changing the hours of contact between members, or fine-tuning frequency of
sending messages in an attempt to conceal importance of a connection.

96

Bibliography

[1] European Data Protection Supervisor, Meeting the Challenges of Big Data, Opinion
7/2015.

[2] Global Government Requests Report. https://govtrequests.facebook.com/.
Accessed: 16-02-2017.

[3] Selfie Soldiers: Russia Checks in to Ukraine. https://news.vice.com/video/
selfie-soldiers-russia-checks-in-to-ukraine. Accessed: 16-02-2017.

[4] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social networks,
25(3):211–230, 2003.

[5] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using supervised
learning. In SDM06: workshop on link analysis, counter-terrorism and security,
2006.

[6] M. Al Hasan and M. J. Zaki. A survey of link prediction in social networks. In
Social network data analytics, pages 243–275. Springer, 2011.

[7] R. Amer and J. M. Giménez. A connectivity game for graphs. Mathematical
Methods of Operations Research, 60(3):453–470, 2004.

[8] J. M. Anthonisse. The rush in a graph. Amsterdam: University of Amsterdam
Mathematical Centre, 1971.

[9] B. S. Baker. Approximation algorithms for np-complete problems on planar graphs.
Journal of the ACM (JACM), 41(1):153–180, 1994.

[10] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[11] V. Barber. The evolution of al qaeda’s global network and al qaeda core’s position
within it: A network analysis. Perspectives on Terrorism, 9(6), 2015.

[12] A. Bavelas. A mathematical model for group structures. Human organization,
7(3):16–30, 1948.

[13] M. A. Beauchamp. An improved index of centrality. Behavioral Science, 10(2):161–
163, 1965.

97

https://govtrequests.facebook.com/
https://news.vice.com/video/selfie-soldiers-russia-checks-in-to-ukraine
https://news.vice.com/video/selfie-soldiers-russia-checks-in-to-ukraine

[14] G. A. Bello, M. Angus, N. Pedemane, J. K. Harlalka, F. H. Semazzi, V. Kumar,
and N. F. Samatova. Response-guided community detection: application to climate
index discovery. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 736–751. Springer, 2015.

[15] G. Berlusconi, F. Calderoni, N. Parolini, M. Verani, and C. Piccardi. Link pre-
diction in criminal networks: A tool for criminal intelligence analysis. PloS one,
11(4):e0154244, 2016.

[16] D. Bilò, L. Gualà, and G. Proietti. Improved approximability and non-
approximability results for graph diameter decreasing problems. Theoretical Com-
puter Science, 417:12–22, 2012.

[17] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email so-
cial networks. In Proceedings of the 2006 international workshop on Mining software
repositories, pages 137–143. ACM, 2006.

[18] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[19] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In Handbook of combinatorial optimization, pages 1–74. Springer, 1999.

[20] S. P. Borgatti. Identifying sets of key players in a social network. Computational
& Mathematical Organization Theory, 12(1):21–34, 2006.

[21] S. P. Borgatti, K. M. Carley, and D. Krackhardt. On the robustness of centrality
measures under conditions of imperfect data. Social networks, 28(2):124–136, 2006.

[22] K. Boyd, K. H. Eng, and C. D. Page. Area under the precision-recall curve: Point es-
timates and confidence intervals. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 451–466. Springer, 2013.

[23] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. Maximizing modularity is hard. arXiv preprint physics/0608255, 2006.

[24] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. On modularity-np-completeness and beyond. Citeseer, 2006.

[25] P. L. Brantingham, M. Ester, R. Frank, U. Glässer, and M. A. Tayebi. Co-offending
network mining. In Counterterrorism and Open Source Intelligence, pages 73–102.
Springer, 2011.

[26] C. V. Cannistraci, G. Alanis-Lobato, and T. Ravasi. From link-prediction in brain
connectomes and protein interactomes to the local-community-paradigm in complex
networks. Scientific reports, 3, 2013.

[27] K. M. Carley. Dynamic network analysis. In Dynamic social network modeling and
analysis: Workshop summary and papers, pages 133–145. Citeseer, 2003.

98

[28] K. M. Carley. Destabilization of covert networks. Computational & Mathematical
Organization Theory, 12(1):51–66, 2006.

[29] K. M. Carley, J.-S. Lee, and D. Krackhardt. Destabilizing networks. Connections,
24(3):31–34, 2001.

[30] J. T. Chatagnier, A. Mintz, and Y. Samban. The decision calculus of terrorist
leaders. Perspectives on Terrorism, 6(4-5), 2012.

[31] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1029–1038. ACM, 2010.

[32] A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very
large networks. Physical review E, 70(6):066111, 2004.

[33] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-
rithms, volume 6. MIT press Cambridge, 2001.

[35] C. D. Correa, T. Crnovrsanin, and K.-L. Ma. Visual reasoning about social net-
works using centrality sensitivity. Visualization and Computer Graphics, IEEE
Transactions on, 18(1):106–120, 2012.

[36] P. Crescenzi, G. D’angelo, L. Severini, and Y. Velaj. Greedily improving our own
closeness centrality in a network. ACM Transactions on Knowledge Discovery from
Data (TKDD), 11(1):9, 2016.

[37] S. F. Crone and D. Soopramanien. Predicting customer online shopping adoption-
an evaluation of data mining and market modelling approaches. In DMIN, pages
215–221, 2005.

[38] N. Crossley, G. Edwards, E. Harries, and R. Stevenson. Covert social movement
networks and the secrecy-efficiency trade off: The case of the {UK} suffragettes
(1906–1914). Social Networks, 34(4):634 – 644, 2012.

[39] G. Csardi and T. Nepusz. The igraph software package for complex network re-
search. InterJournal, Complex Systems:1695, 2006.

[40] B. Debatin, J. P. Lovejoy, A.-K. Horn, and B. N. Hughes. Facebook and online
privacy: Attitudes, behaviors, and unintended consequences. Journal of Computer-
Mediated Communication, 15(1):83–108, 2009.

[41] S. Dehghani, M. A. Fazli, J. Habibi, and S. Yazdanbod. Using shortcut edges
to maximize the number of triangles in graphs. Operations Research Letters,
43(6):586–591, 2015.

99

[42] F. Demiroz and N. Kapucu. Anatomy of a dark network: the case of the turkish
ergenekon terrorist organization. Trends in organized crime, 15(4):271–295, 2012.

[43] W. Enders and X. Su. Rational terrorists and optimal network structure. Journal
of Conflict Resolution, 51(1):33–57, 2007.

[44] P. Erdős and A. Rényi. On random graphs i. Publ. Math. Debrecen, 6:290–297,
1959.

[45] S. F. Everton. Network topography, key players and terrorist networks. Connec-
tions, 2009.

[46] S. F. Everton and N. Roberts. Strategies for combating dark networks. Paper
presented at the Sunbelt XXIX: The Annual Meeting of the International Network
of Social Net work Analysis., 2011.

[47] J. D. Farley. Breaking al qaeda cells: A mathematical analysis of counterterrorism
operations (a guide for risk assessment and decision making). Studies in Conflict
& Terrorism, 26(6):399–411, 2003.

[48] T. Fawcett. An introduction to ROC analysis. Pattern recognition letters,
27(8):861–874, 2006.

[49] E. Ferrara, P. De Meo, S. Catanese, and G. Fiumara. Detecting criminal organi-
zations in mobile phone networks. Expert Systems with Applications, 41(13):5733–
5750, 2014.

[50] M. Fire, G. Katz, L. Rokach, and Y. Elovici. Links reconstruction attack. In
Security and Privacy in Social Networks, pages 181–196. Springer, 2013.

[51] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,
2010.

[52] T. L. Frantz, M. Cataldo, and K. M. Carley. Robustness of centrality measures
under uncertainty: Examining the role of network topology. Computational and
Mathematical Organization Theory, 15(4):303, 2009.

[53] F. Frati, S. Gaspers, J. Gudmundsson, and L. Mathieson. Augmenting graphs to
minimize the diameter. In International Symposium on Algorithms and Computa-
tion, pages 383–393. Springer, 2013.

[54] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

[55] L. C. Freeman. Centrality in social networks conceptual clarification. Social net-
works, 1(3):215–239, 1979.

[56] J. L. Gardy, J. C. Johnston, S. J. H. Sui, V. J. Cook, L. Shah, E. Brodkin, S. Rempel,
R. Moore, Y. Zhao, R. Holt, et al. Whole-genome sequencing and social-network
analysis of a tuberculosis outbreak. New England Journal of Medicine, 364(8):730–
739, 2011.

100

[57] L. Getoor and C. P. Diehl. Link mining: a survey. ACM SIGKDD Explorations
Newsletter, 7(2):3–12, 2005.

[58] J. Goldenberg, B. Libai, and E. Muller. Using complex systems analysis to ad-
vance marketing theory development: Modeling heterogeneity effects on new prod-
uct growth through stochastic cellular automata. Academy of Marketing Science
Review, 9(3):1–18, 2001.

[59] M. Granovetter. Threshold models of collective behavior. American journal of
sociology, pages 1420–1443, 1978.

[60] R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral. The worldwide air trans-
portation network: Anomalous centrality, community structure, and cities’ global
roles. Proceedings of the National Academy of Sciences, 102(22):7794–7799, 2005.

[61] I. Hamed, M. Charrad, and N. B. Ben Saoud. Which Centrality Metric for Which
Terrorist Network Topology?, pages 195–208. Springer International Publishing,
Cham, 2016.

[62] B. Hayes. Connecting the dots can the tools of graph theory and social-network
studies unravel the next big plot? American Scientist, 94(5):400–404, 2006.

[63] R. Heatherly, M. Kantarcioglu, and B. Thuraisingham. Preventing private infor-
mation inference attacks on social networks. IEEE TKDE, 25(8):1849–1862, 2013.

[64] I2. Analyst’s Notebook 8, Social Network Analysis Whitepaper. www.i2group.com,
2010.

[65] P. Jaccard. Etude comparative de la distribution florale dans une portion des Alpes
et du Jura. Impr. Corbaz, 1901.

[66] R. Janssen and H. Monsuur. Stable network topologies using the notion of covering.
European Journal of Operational Research, 218(3):755–763, 2012.

[67] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of
computer and system sciences, 9(3):256–278, 1974.

[68] N. F. Johnson, M. Zheng, Y. Vorobyeva, A. Gabriel, H. Qi, N. Velasquez, P. Man-
rique, D. Johnson, E. Restrepo, C. Song, and S. Wuchty. New online ecology of
adversarial aggregates: Isis and beyond. Science, 352(6292):1459–1463, 2016.

[69] A. M. Kaplan and M. Haenlein. Users of the world, unite! the challenges and
opportunities of social media. Business horizons, 53(1):59–68, 2010.

[70] R. M. Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103. Springer, 1972.

[71] B. Karrer, E. Levina, and M. E. Newman. Robustness of community structure in
networks. Physical Review E, 77(4):046119, 2008.

101

[72] M. Kearns, A. Roth, Z. S. Wu, and G. Yaroslavtsev. Private algorithms for the
protected in social network search. Proceedings of the National Academy of Sciences,
page 201510612, 2016.

[73] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 137–146. ACM, 2003.

[74] M. Khayat. Jihadis Shift To Using Secure Communication App Telegram’s Chan-
nels Service. Inquiry & Analysis Series, (1198), 2015.

[75] J. Kilberg. A basic model explaining terrorist group organizational structure. Stud-
ies in Conflict & Terrorism, 35(11):810–830, 2012.

[76] G. King, J. Pan, and M. E. Roberts. How censorship in china allows govern-
ment criticism but silences collective expression. American Political Science Review,
107(02):326–343, 2013.

[77] G. King, J. Pan, and M. E. Roberts. Reverse-engineering censorship in china: Ran-
domized experimentation and participant observation. Science, 345(6199):1251722,
2014.

[78] D. E. Knuth. The Stanford GraphBase: a platform for combinatorial computing,
volume 37. Addison-Wesley Reading, 1993.

[79] S. Koschade. A social network analysis of jemaah islamiyah: The applications to
counterterrorism and intelligence. Studies in Conflict & Terrorism, 29(6):559–575,
2006.

[80] V. E. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43–52, 2002.

[81] A. Kumar and N. Rathore. Improving attribute inference attack using link predic-
tion in online social networks. In Recent Advances in Mathematics, Statistics and
Computer Science, pages 494–503. 2016.

[82] T. U. Kuzubaş, I. Ömercikoğlu, and B. Saltoğlu. Network centrality measures and
systemic risk: An application to the turkish financial crisis. Physica A: Statistical
Mechanics and its Applications, 405:203–215, 2014.

[83] A. Lancichinetti and S. Fortunato. Community detection algorithms: a comparative
analysis. Physical review E, 80(5):056117, 2009.

[84] J. I. Lane, V. Stodden, S. Bender, and H. Nissenbaum, editors. Privacy, big data,
and the public good: frameworks for engagement. 2014.

[85] E. A. Leicht, P. Holme, and M. E. Newman. Vertex similarity in networks. Physical
Review E, 73(2):026120, 2006.

[86] J. Leskovec and J. J. Mcauley. Learning to discover social circles in ego networks.
In Advances in neural information processing systems, pages 539–547, 2012.

102

[87] D. Li, Z. Xu, S. Li, X. Sun, A. Gupta, and K. Sycara. Link recommendation for
promoting information diffusion in social networks. In Proceedings of the 22nd
International Conference on World Wide Web, pages 185–186. ACM, 2013.

[88] X. Li and H. Chen. Recommendation as link prediction in bipartite graphs: A graph
kernel-based machine learning approach. Decision Support Systems, 54(2):880–890,
2013.

[89] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019–
1031, 2007.

[90] J. Lindamood, R. Heatherly, M. Kantarcioglu, and B. Thuraisingham. Inferring pri-
vate information using social network data. In Proceedings of the 18th international
conference on World wide web, pages 1145–1146. ACM, 2009.

[91] R. Lindelauf, P. Borm, and H. Hamers. The influence of secrecy on the communi-
cation structure of covert networks. Social Networks, 31(2):126–137, 2009.

[92] R. Lindelauf, H. Hamers, and B. Husslage. Cooperative game theoretic centrality
analysis of terrorist networks: The cases of jemaah islamiyah and al qaeda. European
Journal of Operational Research, 229(1):230–238, 2013.

[93] X. Liu, E. Patacchini, Y. Zenou, and L.-F. Lee. Criminal networks: Who is the key
player? 2012.

[94] L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A:
Statistical Mechanics and its Applications, 390(6):1150–1170, 2011.

[95] J. Magouirk, S. Atran, and M. Sageman. Connecting terrorist networks. Studies in
Conflict & Terrorism, 31(1):1–16, 2008.

[96] C. D. Manning and H. Schütze. Foundations of statistical natural language process-
ing, volume 999. MIT Press, 1999.

[97] V. Mayer-Schnberger. Big Data: A Revolution That Will Transform How We Live,
Work and Think. Viktor Mayer-Schnberger and Kenneth Cukier. John Murray
Publishers, UK, 2013.

[98] R. M. Medina. Social network analysis: a case study of the islamist terrorist network.
Security Journal, 27(1):97–121, 2014.

[99] A. Meyerson and B. Tagiku. Minimizing average shortest path distances via short-
cut edge addition. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 272–285. Springer, 2009.

[100] T. Michalak, T. Rahwan, O. Skibski, and M. Wooldridge. Defeating terrorist net-
works with game theory. IEEE Intelligent Systems, 2015.

103

[101] T. P. Michalak, T. Rahwan, N. R. Jennings, P. L. Szczepański, O. Skibski,
R. Narayanam, and M. J. Wooldridge. Computational analysis of connectivity
games with applications to the investigation of terrorist networks. In Proceedings
of the Twenty-Third international joint conference on Artificial Intelligence, pages
293–301. AAAI Press, 2013.

[102] T. P. Michalak, T. Rahwan, and M. Wooldridge. Strategic social network analysis.
In AAAI, 2017.

[103] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who you
know: Inferring user profiles in online social networks. In Proceedings of the Third
ACM International Conference on Web Search and Data Mining, WSDM ’10, pages
251–260, New York, NY, USA, 2010. ACM.

[104] I.-C. Moon. Destabilization of adversarial organizations with strategic interventions.
ProQuest, 2008.

[105] C. Morselli, C. Giguère, and K. Petit. The efficiency/security trade-off in criminal
networks. Social Networks, 29(1):143 – 153, 2007.

[106] M. E. Newman. Clustering and preferential attachment in growing networks. Phys-
ical review E, 64(2):025102, 2001.

[107] M. E. Newman. Finding community structure in networks using the eigenvectors
of matrices. Physical review E, 74(3):036104, 2006.

[108] M. E. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical review E, 69(2):026113, 2004.

[109] A. Nordrum. Pro-ISIS Online Groups Use Social Media Survival Strategies to Evade
Authorities, 2016.

[110] G. K. Orman and V. Labatut. A comparison of community detection algorithms
on artificial networks. In Discovery science, pages 242–256. Springer, 2009.

[111] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. 1999.

[112] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping commu-
nity structure of complex networks in nature and society. Nature, 435(7043):814–
818, 2005.

[113] M. Papagelis, F. Bonchi, and A. Gionis. Suggesting ghost edges for a smaller
world. In Proceedings of the 20th ACM international conference on Information
and knowledge management, pages 2305–2308. ACM, 2011.

[114] N. Parotsidis, E. Pitoura, and P. Tsaparas. Selecting shortcuts for a smaller world.
In Proceedings of the 2015 SIAM International Conference on Data Mining, pages
28–36. SIAM, 2015.

104

[115] N. Parotsidis, E. Pitoura, and P. Tsaparas. Centrality-aware link recommendations.
In Proceedings of the Ninth ACM International Conference on Web Search and Data
Mining, pages 503–512. ACM, 2016.

[116] D. Paulo, B. Fischl, T. Markow, M. Martin, and P. Shakarian. Social network
intelligence analysis to combat street gang violence. In Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining, pages 1042–1049. ACM, 2013.

[117] A. Perliger and A. Pedahzur. Social network analysis in the study of terrorism and
political violence. PS: Political Science & Politics, 44(01):45–50, 2011.

[118] S. Perumal, P. Basu, and Z. Guan. Minimizing eccentricity in composite networks
via constrained edge additions. In Military Communications Conference, MILCOM
2013-2013 IEEE, pages 1894–1899. IEEE, 2013.

[119] P. Pons and M. Latapy. Computing communities in large networks using random
walks. In Computer and Information Sciences-ISCIS 2005, pages 284–293. Springer,
2005.

[120] A. Popescul and L. H. Ungar. Statistical relational learning for link prediction. In
IJCAI workshop on learning statistical models from relational data, volume 2003.
Citeseer, 2003.

[121] J. Qin, J. J. Xu, D. Hu, M. Sageman, and H. Chen. Analyzing terrorist networks:
A case study of the global salafi jihad network. In Intelligence and security infor-
matics, pages 287–304. Springer, 2005.

[122] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási. Hierar-
chical organization of modularity in metabolic networks. Science, 297(5586):1551–
1555, 2002.

[123] J. Reichardt and S. Bornholdt. Statistical mechanics of community detection. Phys-
ical Review E, 74(1):016110, 2006.

[124] S. Ressler. Social network analysis as an approach to combat terrorism: Past,
present, and future research. Homeland Security Affairs, 2(2):1–10, 2006.

[125] M. Rosvall, D. Axelsson, and C. T. Bergstrom. The map equation. The European
Physical Journal Special Topics, 178(1):13–23, 2010.

[126] R. Rothenberg. From whole cloth: Making up the terrorist network. New York
Times, 2001.

[127] S. Saha, A. Adiga, B. A. Prakash, and A. K. S. Vullikanti. Approximation algo-
rithms for reducing the spectral radius to control epidemic spread. In Proceedings
of the 2015 SIAM International Conference on Data Mining, pages 568–576. SIAM,
2015.

[128] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986.

105

[129] R. Scarborough. Islamic State using leaked Snowden info to evade U.S. intelligence,
2014.

[130] J. B. Schafer, J. A. Konstan, and J. Riedl. E-commerce recommendation appli-
cations. In Applications of Data Mining to Electronic Commerce, pages 115–153.
Springer, 2001.

[131] J. Scott. Social network analysis. Sage, 2012.

[132] M. A. Shaikh, J. Wang, Z. Yang, and Y. Song. Graph structural mining in terrorist
networks. In Advanced Data Mining and Applications, pages 570–577. Springer,
2007.

[133] M. E. Shaw. Group structure and the behavior of individuals in small groups. The
Journal of Psychology, 38(1):139–149, 1954.

[134] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[135] D. Simpson and P. Brown. NSA mines facebook for connections, including ameri-
cans’ profiles. CNN, 2013. Accessed: May 25, 2016.

[136] T. Sørensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on
Danish commons. Biol. Skr., 5:1–34, 1948.

[137] M. K. Sparrow. The application of network analysis to criminal intelligence: An
assessment of the prospects. Social networks, 13(3):251–274, 1991.

[138] F. Spezzano, V. Subrahmanian, and A. Mannes. Stone: shaping terrorist organi-
zational network efficiency. In Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pages 348–355.
ACM, 2013.

[139] R. Stevenson and N. Crossley. Change in covert social movement networks: The
‘inner circle’of the provisional irish republican army. Social Movement Studies,
13(1):70–91, 2014.

[140] M. A. Tayebi, L. Bakker, U. Glasser, and V. Dabbaghian. Locating central actors
in co-offending networks. In Advances in Social Networks Analysis and Mining
(ASONAM), 2011 International Conference on, pages 171–179. IEEE, 2011.

[141] R. W. Taylor, E. J. Fritsch, and J. Liederbach. Digital crime and digital terrorism.
Prentice Hall Press, 2014.

[142] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos. Gelling,
and melting, large graphs by edge manipulation. In Proceedings of the 21st ACM
international conference on Information and knowledge management, pages 245–
254. ACM, 2012.

106

[143] M. Tsvetovat and K. M. Carley. Generation of realistic social network datasets for
testing of analysis and simulation tools. Technical report, DTIC Document, 2005.

[144] M. Tsvetovat and K. M. Carley. Structural knowledge and success of anti-terrorist
activity: The downside of structural equivalence. Institute for Software Research,
page 43, 2005.

[145] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society, 2(1):230–265, 1937.

[146] V. V. Vazirani. Approximation algorithms. Springer Science & Business Media,
2013.

[147] M. Waniek, T. P. Michalak, and T. Rahwan. Hiding relationships in a social net-
work. Mimeo, available on request.

[148] M. Waniek, T. P. Michalak, T. Rahwan, and M. Wooldridge. Hiding individuals
and communities in a social network. CoRR, abs/1608.00375, 2016.

[149] M. Waniek, T. P. Michalak, T. Rahwan, and M. Wooldridge. On the construction
of covert networks. In Proceedings of the 2017 International Conference on Au-
tonomous Agents & Multiagent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2017.

[150] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393(6684):440–442, 1998.

[151] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection in
networks: The state-of-the-art and comparative study. ACM Computing Surveys
(csur), 45(4):43, 2013.

[152] J. Xu and H. Chen. Criminal network analysis and visualization. Communications
of the ACM, 48(6):100–107, 2005.

[153] J. Xu and H. Chen. The topology of dark networks. Communications of the ACM,
51(10):58–65, 2008.

[154] J. Yang and J. Leskovec. Defining and evaluating network communities based on
ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

[155] Z. Yin, M. Gupta, T. Weninger, and J. Han. A unified framework for link rec-
ommendation using random walks. In Advances in Social Networks Analysis and
Mining (ASONAM), 2010 International Conference on, pages 152–159. IEEE, 2010.

[156] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of anthropological research, pages 452–473, 1977.

[157] K. Zafiropoulos, V. Vrana, and D. Vagianos. Bloggers’ community characteristics
and influence within greek political blogosphere. Future Internet, 4(2):396–412,
2012.

107

[158] P. Zhang, X. Wang, F. Wang, A. Zeng, and J. Xiao. Measuring the robustness of
link prediction algorithms under noisy environment. Scientific reports, 6, 2016.

[159] E. Zheleva and L. Getoor. To join or not to join: The illusion of privacy in social
networks with mixed public and private user profiles. In Proceedings of the 18th
International Conference on World Wide Web, WWW ’09, pages 531–540, New
York, NY, USA, 2009. ACM.

[160] T. Zhou, L. Lü, and Y.-C. Zhang. Predicting missing links via local information.
The European Physical Journal B, 71(4):623–630, 2009.

108

Appendix A

ROAM Simulation Results

Degree Ranking Closeness Ranking Betweenness Ranking

R
an

do
m

G
ra

ph
(1

00
,1

0)

0

20

40

60

80
0 2 4 6 8 10

No. of executions

R
an

ki
ng

0

20

40

60

80

0 2 4 6 8 10
No. of executions

R
an

ki
ng

0

20

40

60

80

0 2 4 6 8 10
No. of executions

R
an

ki
ng

Sm
al

lW
or

ld
(1

00
,1

0,
.2

5) 0

20

40

60

80

100
0 2 4 6 8 10

No. of executions

R
an

ki
ng

0

20

40

60

80

100
0 2 4 6 8 10

No. of executions

R
an

ki
ng

0

20

40

60

80

100
0 2 4 6 8 10

No. of executions

R
an

ki
ng

ROAM(2) ROAM(3) ROAM(4)

Figure A.1: Consecutive execution of ROAM (the x-axis represents the number of ex-
ecutions). Specifically, given different networks, the subfigures show the source node’s
ranking (according to the centrality measures). Results are shown for ROAM(b), where
b is the budget in each execution.

109

IC Influence LT Influence

R
an

do
m

G
ra

ph
(1

00
,1

0)

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

Sm
al

lW
or

ld
(1

00
,1

0,
.2

5)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

0.4

0.6

0.8

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

ROAM(2) ROAM(3) ROAM(4)

Figure A.2: Consecutive execution of ROAM (the x-axis represents the number of exe-
cutions). Specifically, given different networks, the subfigures show the relative change in
the source node’s influence value (according to the influence models). Results are shown
for ROAM(b), where b is the budget in each execution.

110

Degree Ranking Closeness Ranking Betweenness Ranking

Sc
al

eF
re

e(
10

00
,3

)

1.0

1.2

1.4

1.6

1.8

0 2 4 6 8 10
No. of executions

R
an

ki
ng

1

2

3

4

5

0 2 4 6 8 10
No. of executions

R
an

ki
ng

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10
No. of executions

R
an

ki
ng

R
an

do
m

G
ra

ph
(1

00
0,

10
) 0

100

200

300

0 2 4 6 8 10
No. of executions

R
an

ki
ng

0

100

200

300

400

500
0 2 4 6 8 10

No. of executions

R
an

ki
ng

0

100

200

300

400

500

0 2 4 6 8 10
No. of executions

R
an

ki
ng

Sm
al

lW
or

ld
(1

00
0,

10
,.

25
) 0

200

400

600

800

1000
0 2 4 6 8 10
No. of executions

R
an

ki
ng

0

200

400

600

800

0 2 4 6 8 10
No. of executions

R
an

ki
ng

0

200

400

600

800

1000
0 2 4 6 8 10
No. of executions

R
an

ki
ng

ROAM(2) ROAM(3) ROAM(4)

Figure A.3: Consecutive execution of ROAM (the x-axis represents the number of ex-
ecutions). Specifically, given different networks, the subfigures show the source node’s
ranking (according to the centrality measures). Results are shown for ROAM(b), where
b is the budget in each execution.

111

IC Influence LT Influence

Sc
al

eF
re

e(
10

00
,3

)

0.96

0.97

0.98

0.99

1.00

0 2 4 6 8 10
No. of executions

V
al

ue

0.94

0.96

0.98

1.00

1.02

1.04

0 2 4 6 8 10
No. of executions

V
al

ue

R
an

do
m

G
ra

ph
(1

00
0,

10
)

0.75

0.80

0.85

0.90

0.95

1.00

0 2 4 6 8 10
No. of executions

V
al

ue

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

Sm
al

lW
or

ld
(1

00
0,

10
,.

25
)

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10
No. of executions

V
al

ue

ROAM(2) ROAM(3) ROAM(4)

Figure A.4: Consecutive execution of ROAM (the x-axis represents the number of exe-
cutions). Specifically, given different networks, the subfigures show the relative change in
the source node’s influence value (according to the influence models). Results are shown
for ROAM(b), where b is the budget in each execution.

112

Degree Ranking Closeness Ranking Betweenness Ranking

B
al

i
at

ta
ck

5

10

15

0 2 4 6 8
No. of executions

R
an

ki
ng

5

10

15

0 2 4 6 8
No. of executions

R
an

ki
ng

5

10

15
0 2 4 6 8

No. of executions

R
an

ki
ng

K
ar

at
e

cl
ub

5

10

15

0 2 4 6 8 10
No. of executions

R
an

ki
ng

0

5

10

15

20

0 2 4 6 8 10
No. of executions

R
an

ki
ng

5

10

15

0 2 4 6 8 10
No. of executions

R
an

ki
ng

L
es

M
is

er
ab

le
s

1

2

3

4

5

6

7
0 5 10 15 20

No. of executions

R
an

ki
ng

5

10

15

0 5 10 15 20
No. of executions

R
an

ki
ng

1

2

3

4

5

6
0 5 10 15 20

No. of executions

R
an

ki
ng

ROAM(2) ROAM(3) ROAM(4)

Figure A.5: Consecutive execution of ROAM (the x-axis represents the number of ex-
ecutions). Specifically, given different networks, the subfigures show the source node’s
ranking (according to the centrality measures). Results are shown for ROAM(b), where
b is the budget in each execution.

113

IC Influence LT Influence

B
al

i
at

ta
ck

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8
No. of executions

V
al

ue

0

2

4

6

8

10

0 2 4 6 8
No. of executions

V
al

ue

K
ar

at
e

cl
ub

1.0

1.5

2.0

0 2 4 6 8 10
No. of executions

V
al

ue

10

12

14

16

18

20

0 2 4 6 8 10
No. of executions

V
al

ue

L
es

M
is

er
ab

le
s

3

4

5

6

7

8

9

0 5 10 15 20
No. of executions

V
al

ue

25

30

35

40

45

0 5 10 15 20
No. of executions

V
al

ue

ROAM(2) ROAM(3) ROAM(4)

Figure A.6: Consecutive execution of ROAM (the x-axis represents the number of exe-
cutions). Specifically, given different networks, the subfigures show the relative change in
the source node’s influence value (according to the influence models). Results are shown
for ROAM(b), where b is the budget in each execution.

114

Degree Ranking Closeness Ranking Betweenness Ranking

G
re

ek
bl

og
s 5

10

0 5 10 15 20
No. of executions

R
an

ki
ng

0

10

20

30

40

50
0 5 10 15 20

No. of executions

R
an

ki
ng

0

10

20

30

0 5 10 15 20
No. of executions

R
an

ki
ng

Fa
ce

bo
ok

(s
m

al
l)

0

10

20

30

0 5 10 15 20
No. of executions

R
an

ki
ng

5

10

15

20

25

30

0 5 10 15 20
No. of executions

R
an

ki
ng

10

20

30

0 5 10 15 20
No. of executions

R
an

ki
ng

Fa
ce

bo
ok

(l
ar

ge
)

20

30

40

50

60
0 5 10 15 20

No. of executions

R
an

ki
ng

0

20

40

60

0 5 10 15 20
No. of executions

R
an

ki
ng

0

20

40

60

80

100
0 5 10 15 20

No. of executions

R
an

ki
ng

ROAM(2) ROAM(3) ROAM(4)

Figure A.7: Consecutive execution of ROAM (the x-axis represents the number of ex-
ecutions). Specifically, given different networks, the subfigures show the source node’s
ranking (according to the centrality measures). Results are shown for ROAM(b), where
b is the budget in each execution.

115

IC Influence LT Influence

G
re

ek
bl

og
s

6

8

10

12

14

0 5 10 15 20
No. of executions

V
al

ue

20

25

30

35

40

0 5 10 15 20
No. of executions

V
al

ue

Fa
ce

bo
ok

(s
m

al
l)

4

6

8

10

0 5 10 15 20
No. of executions

V
al

ue

10

12

14

16

18

0 5 10 15 20
No. of executions

V
al

ue

Fa
ce

bo
ok

(l
ar

ge
)

598.5

599.0

599.5

600.0

600.5

601.0

0 5 10 15 20
No. of executions

V
al

ue

40

42

44

46

0 5 10 15 20
No. of executions

V
al

ue

ROAM(2) ROAM(3) ROAM(4)

Figure A.8: Consecutive execution of ROAM (the x-axis represents the number of exe-
cutions). Specifically, given different networks, the subfigures show the relative change in
the source node’s influence value (according to the influence models). Results are shown
for ROAM(b), where b is the budget in each execution.

116

Degree Ranking Closeness Ranking Betweenness Ranking

T
w

it
te

r
(s

m
al

l)

2.0

2.5

3.0

3.5

4.0

4.5

5.0
0 5 10 15 20

No. of executions

R
an

ki
ng

5

10

15

0 5 10 15 20
No. of executions

R
an

ki
ng

2

3

4

5

6

7

8
0 5 10 15 20

No. of executions

R
an

ki
ng

T
w

it
te

r
(m

ed
iu

m
)

1.0

1.5

2.0

2.5

3.0
0 5 10 15 20

No. of executions

R
an

ki
ng

5

10

15

0 5 10 15 20
No. of executions

R
an

ki
ng

3.0

3.5

4.0

4.5

5.0
0 5 10 15 20

No. of executions

R
an

ki
ng

T
w

it
te

r
(l

ar
ge

)

3.0

3.5

4.0

4.5

5.0
0 5 10 15 20

No. of executions

R
an

ki
ng

1

2

3

4

5
0 5 10 15 20

No. of executions

R
an

ki
ng

5.0

5.5

6.0

6.5

7.0
0 5 10 15 20

No. of executions

R
an

ki
ng

ROAM(2) ROAM(3) ROAM(4)

Figure A.9: Consecutive execution of ROAM (the x-axis represents the number of ex-
ecutions). Specifically, given different networks, the subfigures show the source node’s
ranking (according to the centrality measures). Results are shown for ROAM(b), where
b is the budget in each execution.

117

IC Influence LT Influence

T
w

it
te

r
(s

m
al

l)

64

66

68

70

72

0 5 10 15 20
No. of executions

V
al

ue

2.4

2.6

2.8

3.0

3.2

3.4

3.6

0 5 10 15 20
No. of executions

V
al

ue

T
w

it
te

r
(m

ed
iu

m
)

186.6

186.7

186.8

186.9

187.0

0 5 10 15 20
No. of executions

V
al

ue

2.6

2.7

2.8

2.9

3.0

0 5 10 15 20
No. of executions

V
al

ue

T
w

it
te

r
(l

ar
ge

)

219.86

219.88

219.90

219.92

219.94

219.96

0 5 10 15 20
No. of executions

V
al

ue

2.5

2.6

2.7

2.8

0 5 10 15 20
No. of executions

V
al

ue

ROAM(2) ROAM(3) ROAM(4)

Figure A.10: Consecutive execution of ROAM (the x-axis represents the number of exe-
cutions). Specifically, given different networks, the subfigures show the relative change in
the source node’s influence value (according to the influence models). Results are shown
for ROAM(b), where b is the budget in each execution.

118

Degree Ranking Closeness Ranking Betweenness Ranking

G
oo

gl
e+

(s
m

al
l)

1

2

3

4

5
0 5 10 15 20

No. of executions

R
an

ki
ng

5

10

15

0 5 10 15 20
No. of executions

R
an

ki
ng

1.0

1.5

2.0

2.5

3.0

3.5

4.0
0 5 10 15 20

No. of executions

R
an

ki
ng

G
oo

gl
e+

(m
ed

iu
m

)

2.0

2.5

3.0

3.5

4.0
0 5 10 15 20

No. of executions

R
an

ki
ng

1.0

1.2

1.4

1.6

1.8

2.0
0 5 10 15 20

No. of executions

R
an

ki
ng

3

4

5

6

7
0 5 10 15 20

No. of executions

R
an

ki
ng

G
oo

gl
e+

(l
ar

ge
)

6

8

10

12

14

16
0 5 10 15 20

No. of executions

R
an

ki
ng

8

10

12

14

0 5 10 15 20
No. of executions

R
an

ki
ng

6

8

10

12

14
0 5 10 15 20

No. of executions

R
an

ki
ng

ROAM(2) ROAM(3) ROAM(4)

Figure A.11: Consecutive execution of ROAM (the x-axis represents the number of ex-
ecutions). Specifically, given different networks, the subfigures show the source node’s
ranking (according to the centrality measures). Results are shown for ROAM(b), where
b is the budget in each execution.

119

IC Influence LT Influence

G
oo

gl
e+

(s
m

al
l)

78

80

82

84

0 5 10 15 20
No. of executions

V
al

ue

2.4

2.6

2.8

0 5 10 15 20
No. of executions

V
al

ue

G
oo

gl
e+

(m
ed

iu
m

)

171.3

171.4

171.5

171.6

171.7

0 5 10 15 20
No. of executions

V
al

ue

8.9

9.0

9.1

9.2

9.3

9.4

0 5 10 15 20
No. of executions

V
al

ue

G
oo

gl
e+

(l
ar

ge
)

268.0

268.2

268.4

268.6

0 5 10 15 20
No. of executions

V
al

ue

3.6

3.7

3.8

3.9

4.0

0 5 10 15 20
No. of executions

V
al

ue

ROAM(2) ROAM(3) ROAM(4)

Figure A.12: Consecutive execution of ROAM (the x-axis represents the number of exe-
cutions). Specifically, given different networks, the subfigures show the relative change in
the source node’s influence value (according to the influence models). Results are shown
for ROAM(b), where b is the budget in each execution.

120

Appendix B

DICE Simulation Results

(b = 4, d = 0) (b = 4, d = 4)

R
an

do
m

G
ra

ph
(1

00
,1

0)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Sm
al

lW
or

ld
(1

00
,1

0,
.2

5)

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Betweenness

Eigenvector

Greedy

Infomap

Louvain

Spinglass

Walktrap

Figure B.1: Consecutive execution of DICE
⌈
|C†|
b

⌉
times (the x-axis represents the comple-

tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE (b, d), where b is the budget in
each execution, and d is the number of removed internal edges.

121

(b = 4, d = 0) (b = 4, d = 4)
Sc

al
eF

re
e(

10
00
,3

)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

R
an

do
m

G
ra

ph
(1

00
0,

10
)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Sm
al

lW
or

ld
(1

00
0,

10
,.

25
)

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Betweenness

Eigenvector

Greedy

Infomap

Louvain

Spinglass

Walktrap

Figure B.2: Consecutive execution of DICE
⌈
|C†|
b

⌉
times (the x-axis represents the comple-

tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE (b, d), where b is the budget in
each execution, and d is the number of removed internal edges.

122

(b = 4, d = 0) (b = 4, d = 4)

W
T

C
9/

11

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

B
al

i
at

ta
ck

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Betweenness

Eigenvector

Greedy

Infomap

Louvain

Spinglass

Walktrap

Figure B.3: Consecutive execution of DICE
⌈
|C†|
b

⌉
times (the x-axis represents the comple-

tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE (b, d), where b is the budget in
each execution, and d is the number of removed internal edges.

123

(b = 4, d = 0) (b = 4, d = 4)
G

re
ek

bl
og

s

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

K
ar

at
e

cl
ub

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

L
es

M
is

er
ab

le
s

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Betweenness

Eigenvector

Greedy

Infomap

Louvain

Spinglass

Walktrap

Figure B.4: Consecutive execution of DICE
⌈
|C†|
b

⌉
times (the x-axis represents the comple-

tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE (b, d), where b is the budget in
each execution, and d is the number of removed internal edges.

124

(b = 4, d = 0) (b = 4, d = 4)

Fa
ce

bo
ok

(s
m

al
l)

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Fa
ce

bo
ok

(l
ar

ge
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Betweenness

Eigenvector

Greedy

Infomap

Louvain

Spinglass

Walktrap

Figure B.5: Consecutive execution of DICE
⌈
|C†|
b

⌉
times (the x-axis represents the comple-

tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE (b, d), where b is the budget in
each execution, and d is the number of removed internal edges.

125

Appendix C

Remainder of the Proof of Lemma 1

In the proof of Lemma 1 (which was presented earlier in Section 6.4), we proved that
point (b) of the lemma holds, and that point (c) holds for every non-edge of the form
(v0, di,j). What remained was to prove the correctness of point (a), as well as the correct-
ness of point (c) for every non-edge of the form:

(i) (v0, v1)

(ii) (ui, Sj) for ui /∈ Sj

(iii) (ui, aj,l) for i 6= j

(iv) (ui, dj,l) for i 6= j

(v) (Si, Sj) for i 6= j

(vi) (Si, aj,l)

(vii) (Si, dj,l)

(viii) (ai1,j1 , ai2,j2)

(ix) (ai1,j1 , di2,j2)

(x) (di1,j1 , di2,j2)

We proved the above for only one similarity index, namely Common Neighbours, σCN.
We will now do the same, but for each of the remaining similarity indices in S. To this
end, first recall how in the proof we showed that the following holds for every network in
ΓA and for every ai,j, di,j, Si in these network:

• δ(ai,j) = 3;

• δ(di,j) = 2;

• 4 ¬ δ(Si) ¬ 5.

126

We also showed that for any given A ⊆ Â, we have SA(u0) = 0. In what follows,
we use those facts without referring back to them. We also use r to denote the number
of ai,j nodes, i.e., r = c(m + 1), and use h to denote the number of di,j nodes, i.e.,
h = (m+ 1)q − 3q = mq − 2q.

Salton similarity index (σSal): We choose c = 1. Then, to prove the correctness of
point (a), it suffices to note that for every network in ΓA we have:

∀uj∈{u0,...,um}σSal(uj, v0) =
1 + |SA(uj)|√

(r + |A|)(m+ q + 2)
.

Moving on to point (c), note that σSal(u0, v0) ¬ 1√
42

(since m ­ 5), and that the following
holds for every network in ΓA:

(i) σSal(v0, v1) =
√
r+|A|√

r+h+q+m+1
> σSal(u0, v0)

(ii) σSal(ui, Sj) ­ 3√
(m+q+2)5

> σSal(u0, v0)

(iii) σSal(ui, aj,l) ­ 1√
(m+q+2)3

> σSal(u0, v0)

(iv) σSal(ui, dj,l) ­ 1√
(m+q+2)2

> σSal(u0, v0)

(v) σSal(Si, Sj) ­ 1√
20
> σSal(u0, v0)

(vi) σSal(Si, aj,l) ­ 1
2
√

3
> σSal(u0, v0)

(vii) σSal(Si, dj,l) ­ 1√
10
> σSal(u0, v0)

(viii) σSal(ai1,j1 , ai2,j2) ­ 2
3 > σSal(u0, v0)

(ix) σSal(ai1,j1 , di2,j2) ­ 1√
6
> σSal(u0, v0)

(x) σSal(di1,j1 , di2,j2) ­ 1
2 > σSal(u0, v0)

Jaccard similarity index (σJac): We choose c = 1. Then, to prove the correctness
of point (a), it suffices to note that for every network in ΓA we have:

∀uj∈{u0,...,um}σJac(uj, v0) =
1 + |SA(uj)|

r + q +m+ |A|+ 2− |SA(uj)|
.

Moving on to point (c), note that σJac(u0, v0) ¬ 1
13 (since m ­ 5), and that the following

holds for every network in ΓA:

(i) σJac(v0, v1) = r+|A|
r+h+q+m+1 > σJac(u0, v0)

(ii) σJac(ui, Sj) ­ 3
m+q+3 > σJac(u0, v0)

(iii) σJac(ui, aj,l) ­ 1
m+q+3 > σJac(u0, v0)

127

(iv) σJac(ui, dj,l) ­ 1
m+q+2 > σJac(u0, v0)

(v) σJac(Si, Sj) ­ 1
8 > σJac(u0, v0)

(vi) σJac(Si, aj,l) ­ 1
6 > σJac(u0, v0)

(vii) σJac(Si, dj,l) ­ 1
6 > σJac(u0, v0)

(viii) σJac(ai1,j1 , ai2,j2) ­ 2
4 > σJac(u0, v0)

(ix) σJac(ai1,j1 , di2,j2) ­ 1
4 > σJac(u0, v0)

(x) σJac(di1,j1 , di2,j2) ­ 1
3 > σJac(u0, v0)

Sørensen similarity index (σSør): We choose c = 1. Then, to prove the correctness
of point (a), it suffices to note that for every network in ΓA we have:

∀uj∈{u0,...,um}σSør(uj, v0) =
2 + 2|SA(uj)|

r + q +m+ |A|+ 2
.

Moving on to point (c), note that σSør(u0, v0) ¬ 2
13 (since m ­ 5), and that the following

holds for every network in ΓA:

(i) σSør(v0, v1) = 2r+2|A|
2r+h+q+m+1+|A| > σSør(u0, v0)

(ii) σSør(ui, Sj) ­ 6
m+q+7 > σSør(u0, v0)

(iii) σSør(ui, aj,l) ­ 2
m+q+5 > σSør(u0, v0)

(iv) σSør(ui, dj,l) ­ 2
m+q+4 > σSør(u0, v0)

(v) σSør(Si, Sj) ­ 2
9 > σSør(u0, v0)

(vi) σSør(Si, aj,l) ­ 2
8 > σSør(u0, v0)

(vii) σSør(Si, dj,l) ­ 2
7 > σSør(u0, v0)

(viii) σSør(ai1,j1 , ai2,j2) ­ 4
6 > σSør(u0, v0)

(ix) σSør(ai1,j1 , di2,j2) ­ 2
5 > σSør(u0, v0)

(x) σSør(di1,j1 , di2,j2) ­ 2
4 > σSør(u0, v0)

Hub Promoted similarity index (σHPI): We choose c = 1. Then, to prove the
correctness of point (a), it suffices to note that for every network in ΓA we have:

∀uj∈{u0,...,um}σHPI(uj, v0) =
1 + |SA(uj)|
r + |A|

.

Moving on to point (c), note that σHPI(u0, v0) ¬ 1
6 (since m ­ 5), and that the following

holds for every network in ΓA:

128

(i) σHPI(v0, v1) = r+|A|
r+|A| = 1 > σHPI(u0, v0)

(ii) σHPI(ui, Sj) ­ 3
5 > σHPI(u0, v0)

(iii) σHPI(ui, aj,l) ­ 1
3 > σHPI(u0, v0)

(iv) σHPI(ui, dj,l) ­ 1
2 > σHPI(u0, v0)

(v) σHPI(Si, Sj) ­ 1
4 > σHPI(u0, v0)

(vi) σHPI(Si, aj,l) ­ 1
3 > σHPI(u0, v0)

(vii) σHPI(Si, dj,l) ­ 1
2 > σHPI(u0, v0)

(viii) σHPI(ai1,j1 , ai2,j2) ­ 2
3 > σHPI(u0, v0)

(ix) σHPI(ai1,j1 , di2,j2) ­ 1
2 > σHPI(u0, v0)

(x) σHPI(di1,j1 , di2,j2) ­ 1
2 > σHPI(u0, v0)

Hub Depressed similarity index (σHDI): We choose c = 1. Then, to prove the
correctness of point (a), it suffices to note that for every network in ΓA we have:

∀uj∈{u0,...,um}σHDI(uj, v0) =
1 + |SA(uj)|
m+ q + 2

.

Moving on to point (c), note that σHDI(u0, v0) ¬ 1
7 (since m ­ 5), and that the following

holds for every network in ΓA:

(i) σHDI(v0, v1) = r+|A|
r+h+q+m+1 > σHDI(u0, v0)

(ii) σHDI(ui, Sj) ­ 3
m+q+2 > σHDI(u0, v0)

(iii) Either σHDI(ui, aj,l) = 1
m+q+2 = σHDI(u0, v0) (if i = j) or σHDI(ui, aj,l) = 2

m+q+2 >

σHDI(u0, v0) (otherwise)

(iv) Either σHDI(ui, dj,l) = 1
m+q+2 = σHDI(u0, v0) (if i = j) or σHDI(ui, dj,l) = 2

m+q+2 >

σHDI(u0, v0) (otherwise)

(v) σHDI(Si, Sj) ­ 1
5 > σHDI(u0, v0)

(vi) σHDI(Si, aj,l) ­ 1
5 > σHDI(u0, v0)

(vii) σHDI(Si, dj,l) ­ 1
5 > σHDI(u0, v0)

(viii) σHDI(ai1,j1 , ai2,j2) ­ 2
3 > σHDI(u0, v0)

(ix) σHDI(ai1,j1 , di2,j2) ­ 1
3 > σHDI(u0, v0)

(x) σHDI(di1,j1 , di2,j2) ­ 1
2 > σHDI(u0, v0)

129

For Leicht-Holme-Newman similarity index (σLHN): We choose c = 1. Then,
to prove the correctness of point (a), it suffices to note that for every network in ΓA:

∀uj∈{u0,...,um}σLHN(uj, v0) =
1 + |SA(uj)|

(r + |A|)(m+ q + 2)
.

Moving on to point (c), note that σLHN(u0, v0) ¬ 1
42 (since m ­ 5), and that the following

holds for every network in ΓA:

(i) σLHN(v0, v1) = 1
r+h+q+m+1 > σLHN(u0, v0)

(ii) σLHN(ui, Sj) ­ 3
(m+q+2)5 > σLHN(u0, v0)

(iii) σLHN(ui, aj,l) ­ 1
(m+q+2)3 > σLHN(u0, v0)

(iv) σLHN(ui, dj,l) ­ 1
(m+q+2)2 > σLHN(u0, v0)

(v) σLHN(Si, Sj) ­ 1
20 > σLHN(u0, v0)

(vi) σLHN(Si, aj,l) ­ 1
12 > σLHN(u0, v0)

(vii) σLHN(Si, dj,l) ­ 1
10 > σLHN(u0, v0)

(viii) σLHN(ai1,j1 , ai2,j2) ­ 2
9 > σLHN(u0, v0)

(ix) σLHN(ai1,j1 , di2,j2) ­ 1
6 > σLHN(u0, v0)

(x) σLHN(di1,j1 , di2,j2) ­ 1
4 > σLHN(u0, v0)

For Adamic-Adar similarity index (σAA): We choose c = 3. Then, to prove the
correctness of point (a), it suffices to note that for every network in ΓA we have:

∀uj∈{u0,...,um}σAA(uj, v0) =
3

log(3)
+
|SA(uj)|
log(5)

.

Moving on to point (c), note that σAA(u0, v0) = 3
log(3) > 6 and that the following holds

for every network in ΓA:

(i) σAA(v0, v1) = r
log(3) + |A|

log(5) > σAA(u0, v0)

(ii) σAA(ui, Sj) = 1
log(r+h+q+m+1) + 3

log(q+m+4) < σAA(u0, v0)

(iii) σAA(ui, aj,l) ¬ 1
log(r+h+q+m+1) + 1

log(q+m+4) < σAA(u0, v0)

(iv) σAA(ui, dj,l) ¬ 1
log(r+h+q+m+1) + 1

log(q+m+4) < σAA(u0, v0)

(v) σAA(Si, Sj) ¬ 1
log(r+h+q+m+1) + 1

log(r+|A|) + 3
log(q+m+4) < σAA(u0, v0)

(vi) σAA(Si, aj,l) ¬ 1
log(r+h+q+m+1) + 1

log(r+|A|) + 1
log(q+m+4) < σAA(u0, v0)

(vii) σAA(Si, dj,l) ¬ 1
log(r+h+q+m+1) + 1

log(q+m+4) < σAA(u0, v0)

130

(viii) σAA(ai1,j1 , ai2,j2) ¬ 1
log(r+h+q+m+1) + 1

log(r+|A|) + 1
log(q+m+4) < σAA(u0, v0)

(ix) σAA(ai1,j1 , di2,j2) ¬ 1
log(r+h+q+m+1) + 1

log(q+m+4) < σAA(u0, v0)

(x) σAA(di1,j1 , di2,j2) ¬ 1
log(r+h+q+m+1) + 1

log(q+m+4) < σAA(u0, v0)

For Resource Allocation similarity index (σRA): We choose c = 3. Then, to
prove the correctness of point (a), it suffices to note that for every network in ΓA we
have:

∀uj∈{u0,...,um}σRA(uj, v0) =
3
3

+
|SA(uj)|

5
.

Moving on to point (c), note that σRA(u0, v0) = 1 and that the following holds for every
network in ΓA:

(i) σRA(v0, v1) = r
3 + |A|

5 > σRA(u0, v0)

(ii) σRA(ui, Sj) = 1
r+h+q+m+1 + 3

q+m+4 < σRA(u0, v0)

(iii) σRA(ui, aj,l) ¬ 1
r+h+q+m+1 + 1

q+m+4 < σRA(u0, v0)

(iv) σRA(ui, dj,l) ¬ 1
r+h+q+m+1 + 1

q+m+4 < σRA(u0, v0)

(v) σRA(Si, Sj) ¬ 1
r+h+q+m+1 + 1

r+|A| + 3
q+m+4 < σRA(u0, v0)

(vi) σRA(Si, aj,l) ¬ 1
r+h+q+m+1 + 1

r+|A| + 1
q+m+4 < σRA(u0, v0)

(vii) σRA(Si, dj,l) ¬ 1
r+h+q+m+1 + 1

q+m+4 < σRA(u0, v0)

(viii) σRA(ai1,j1 , ai2,j2) ¬ 1
r+h+q+m+1 + 1

r+|A| + 1
q+m+4 < σRA(u0, v0)

(ix) σRA(ai1,j1 , di2,j2) ¬ 1
r+h+q+m+1 + 1

q+m+4 < σRA(u0, v0)

(x) σRA(di1,j1 , di2,j2) ¬ 1
r+h+q+m+1 + 1

q+m+4 < σRA(u0, v0) �

131

Appendix D

An Efficient Implementation of the
OTC algorithm

We now present a more efficient implementation of the OTC algorithm (see Algorithm 6).
The complexity of this implementation is O(|H||V |2 + b|H||V |). The |H||V |2 term comes
from computing an initial score θ(v,w) for each non-edge (v, w) ∈ A′ (this can be done
in time linear in |V | for each of the |H||V | non-edges). The b|H||V | term comes from
searching for a non-edge in Â with the maximal score. Finally, updating the scores after
adding each of the b edges can be done in time linear in |V |.

Notice that when |H| = ω(log(|V |)) and b = ω(|V |) an implementation utilizing
a priority queue (e.g., a heap [34]) is faster. The complexity of such an implementa-
tion is O(|H||V |2 + b|V | log(|V |)). In more detail, a priority queue can be built in time
O(|H||V |2). The cost of all operations of extracting an element with maximal score is
then O(b log(|H||V |)), which equals O(b log(|V |)), since |H| is at most Θ(|V |2). However,
the cost of updating the scores is now O(b|V | log(|V |)), since it could involve either in-
creasing or decreasing the scores (decreasing scores is realized by removing an element
and adding it with a lower score).

132

Algorithm 6 The Open-Triad-Creation (OTC) algorithm

Input: A network (V,E), a budget b ∈ N, a set of edges that can be added Â ⊆ Ē, and
a set of edges to be hidden H ⊂ E.

Output: Updated network (V,E).
A′ ←

{
(v, w) ∈ Â :

(
∃u ∈ N(v) : (u, v) ∈ H

)
∨
(
∃u ∈ N(w) : (u,w) ∈ H

)}
for (v, w) ∈ A′ do

if ∃u∈V
(
(v, u)∈E \H ∧ (w, u)∈H

)
∨
(
(w, u)∈E \H ∧ (v, u)∈H

)
then

θ(v,w) ← −∞
else

θ(v,w)←
∣∣∣(N(V,E\H)(v) ∪N(V,E\H)(w)

)
\N(V,E\H)(v, w)

∣∣∣
for i = 1, . . . , b do

(v∗, w∗)← arg max(v,w)∈A′ θ(v,w)

if θ(v∗,w∗) > −∞ then
E ← E ∪ (v∗, w∗)
for u ∈ V \ {v∗, w∗} do

if (u, v∗) ∈ A′ then
if (u,w∗) ∈ H then θ(u,v∗) ← −∞
if (u,w∗) ∈ E \H ∧ θ(u,v∗) > −∞ then θ(u,v∗) ← θ(u,v∗) − 1

if (u,w∗) ∈ Ē ∧ θ(u,v∗) > −∞ then θ(u,v∗) ← θ(u,v∗) + 1

if (u,w∗) ∈ A′ then
if (u, v∗) ∈ H then

θ(u,w∗) ← −∞
if (u, v∗) ∈ E \H ∧ θ(u,w∗) > −∞ then

θ(u,w∗) ← θ(u,w∗) − 1

if (u, v∗) ∈ Ē ∧ θ(u,w∗) > −∞ then
θ(u,w∗) ← θ(u,w∗) + 1

133

Appendix E

Priority Queue Implementation of
the CTR algorithm

We now show an alternative implementation of the CTR algorithm (see Algorithm 7),
that utilizes a priority queue (e.g., a heap [34]). The complexity of such an implementa-
tion is O(|H||V | + b|V | log(|V |)). In more detail, a priority queue can be built in time
O(|H||V |). The cost of all operations of extracting an element with maximal score is then
O(b log(|H||V |)), which equals O(b log(|V |)), since |H| is at most Θ(|V |2). However, the
cost of updating the scores becomes O(b|V | log(|V |)), since it can only involve decreasing
the scores (decreasing scores is realized by removing an element and adding it with a
lower score).

Algorithm 7 The Open-Triad-Creation (OTC) algorithm

Input: A network (V,E), a budget b ∈ N, a set of edges that can be removed R̂ ⊆ E,
and a set of edges to be hidden H ⊂ E.

Output: Updated network (V,E).
R′ ←

{
(v, w) ∈ R̂ :

(
∃u ∈ N(v) : (u, v) ∈ H

)
∨
(
∃u ∈ N(w) : (u,w) ∈ H

)}
for (x, y) ∈ R′ do

θ(x,y) ← 0

for (v, w) ∈ H do
for u ∈ N(v, w) do

if (v, u) ∈ E \H ∧ (w, u) ∈ E \H then
if (v, u) ∈ R′ then θ(v,u) ← θ(v,u) + 1

if (w, u) ∈ R′ then θ(w,u) ← θ(w,u) + 1

for i = 1, . . . , b do
(v∗, w∗)← arg max(v,w)∈R′ θ(v,w)

if θ(v∗,w∗) > 0 then
E = E \ (v∗, w∗)
for u ∈ N(v∗) ∪N(w∗) do

if (v∗, u) ∈ H ∧ (w∗, u) ∈ R′ then θ(w∗,u) ← θ(w∗,u) − 1

if (w∗, u) ∈ H ∧ (v∗, u) ∈ R′ then θ(v∗,u) ← θ(v∗,u) − 1

134

Appendix F

OTC and CTR Simulation Results

Fa
ce

bo
ok

(s
m

al
l)

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Fa
ce

bo
ok

(l
ar

ge
)

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.1: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of OTC. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

135

Fa
ce

bo
ok

(s
m

al
l)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Fa
ce

bo
ok

(l
ar

ge
)

0.975

0.980

0.985

0.990

0.995

1.000

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.2: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of CTR. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

136

G
re

ek
bl

og
s

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

K
ar

at
e

cl
ub

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

L
es

M
is

er
ab

le
s

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.3: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of OTC. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

137

G
re

ek
bl

og
s

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

K
ar

at
e

cl
ub

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

L
es

M
is

er
ab

le
s

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.4: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of CTR. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

138

W
T

C
9/

11

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

B
al

i
at

ta
ck

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.5: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of OTC. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

139

W
T

C
9/

11

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

B
al

i
at

ta
ck

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.6: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of CTR. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

140

R
an

do
m

G
ra

ph
(1

00
,1

0)

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Sm
al

lW
or

ld
(1

00
,1

0,
.2

5)

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.7: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of OTC. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

141

R
an

do
m

G
ra

ph
(1

00
,1

0)

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Sm
al

lW
or

ld
(1

00
,1

0,
.2

5)

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.8: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of CTR. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

142

Sc
al

eF
re

e(
10

00
,3

)

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

R
an

do
m

G
ra

ph
(1

00
0,

10
)

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Sm
al

lW
or

ld
(1

00
0,

10
,.

25
)

0.95

0.96

0.97

0.98

0.99

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.9: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of OTC. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

143

Sc
al

eF
re

e(
10

00
,3

)

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

R
an

do
m

G
ra

ph
(1

00
0,

10
)

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Sm
al

lW
or

ld
(1

00
0,

10
,.

25
)

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
U
C

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Completion

A
P

Adamic-Adar

Common Neighbours

Hub Depressed

Hub Promoted

Jaccard

Leicht-Holme-Newman

Resource Allocation

Salton

Sorensen

Figure F.10: The Area under the ROC curve (AUC) and the Average Precision (AP)
during the execution of CTR. Results are shown for an average of 50 executions, coloured
areas representing the 95% confidence intervals.

144

	Introduction
	Motivation
	Organization and Results
	Related Work
	Link Recommendation
	Sensitivity Analysis
	Dark Networks Analysis

	Publications

	Preliminaries
	Basic Network Notation
	Datasets
	Computational Complexity
	The Turing Machine
	Complexity Classes and Reduction Process
	NP-Complete Problems

	Disguising Centrality of a Node
	Introduction
	Preliminaries
	Centrality Measures
	Models of Influence

	Problem Definitions
	Complexity Analysis
	Heuristic Solution
	The ROAM heuristic
	Configuring the ROAM Heuristic
	Experimental Results

	Concluding Remarks

	Hiding Leaders
	Introduction
	Problem Definition
	Complexity Analysis
	Constructing a Network
	Concluding Remarks

	Hiding Communities
	Introduction
	Preliminaries
	Minimizing Modularity
	Measure of Concealment
	Heuristic Solution
	The DICE Heuristic
	Experimental Results

	Concluding Remarks

	Evading Link Prediction
	Introduction
	Preliminaries
	Problem Definition
	Complexity Analysis
	Heuristic Solution
	The Effects of Adding or Removing an Edge
	The OTC Heuristic
	The CTR Heuristic
	Experimental Design
	Simulation Results

	Concluding Remarks

	Conclusions
	Bibliography
	ROAM Simulation Results
	DICE Simulation Results
	Remainder of the Proof of Lemma 1
	An Efficient Implementation of the OTC algorithm
	Priority Queue Implementation of the CTR algorithm
	OTC and CTR Simulation Results

