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Abstract— Random Walks-based Anomaly Detection (RWAD)
is commonly used to identify anomalous patterns in various
applications. An intriguing characteristic of RWAD is that
the input graph can either be pre-existing graphs or feature-
derived graphs constructed from raw features. Consequently,
there are two potential attack surfaces against RWAD: graph-
space attacks and feature-space attacks. In this paper, we explore
this vulnerability by designing practical coupled-space (interde-
pendent feature-space and graph-space) attacks, investigating the
interplay between graph-space and feature-space attacks. To this
end, we conduct a thorough complexity analysis, proving that
attacking RWAD is NP-hard. Then, we proceed to formulate
the graph-space attack as a bi-level optimization problem and
propose two strategies to solve it: alternative iteration (alterI-
attack) or utilizing the closed-form solution of the random
walk model (cf-attack). Finally, we utilize the results from
the graph-space attacks as guidance to design more powerful
feature-space attacks (i.e., graph-guided attacks). Comprehensive
experiments demonstrate that our proposed attacks are effective
in enabling the target nodes to evade the detection from RWAD
with a limited attack budget. In addition, we conduct transfer
attack experiments in a black-box setting, which show that our
feature attack significantly decreases the anomaly scores of target
nodes. Our study opens the door to studying the coupled-space
attack against graph anomaly detection in which the graph space
relies on the feature space.

Index Terms— Graph-based anomaly detection, random walk,
poisoning attack, adversarial attacks, security and privacy.

I. INTRODUCTION

GRAPH-BASED Anomaly Detection (GAD) has gained
significant research attention in recent years due to

the widespread use of graph data across various application
domains. GAD algorithms are designed to identify anoma-
lies in a graph, where nodes represent entities, and edges
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indicate their relations. Essentially, a GAD algorithm works
by initially measuring the similarities among nodes and then
identifying nodes that are less similar to the rest as anomalous.
Despite the development of supervised GADs, such as GADs
based on graph neural networks (GNNs) [1], unsupervised
GADs still have advantages in their simplicity, unsupervised
property, and effectiveness. Random Walks (RWs), such as
PageRank [2], have emerged as a powerful tool for measuring
node similarities over graphs and have become a funda-
mental component of many unsupervised GAD systems that
are extensively employed in diverse applications. Notably,
Random-Walk-based Anomaly Detection (RWAD) has been
employed in detecting money laundering within the financial
industry [3], identifying fraudsters in online shopping [4],
uncovering fake accounts in social networks [5], [6], [7], [8],
[9], and serving as a general unsupervised outlier detection
method for bipartite graphs [10], [11] (e.g., review data in
recommender systems, stock market transaction data, and
short message service), multivariate time series data [12],
[13] (e.g., electrocardiograms data), and the most common
feature data [14], [15], [16], [17], [18] (e.g., network intrusion
detection data). Moreover, random walk has also been adopted
to improve large-scale graph anomalies detection [19] and
enhance deep-learning-based anomalies detection [20], [21].
These diverse applications underscore the important role of
RWAD in ensuring system security.

As the accuracy of predictions produced by the RWAD
methods is crucial for system security, it is essential to
assess their robustness in a real-world adversarial environment.
In fact, the individuals that RWAD aims to detect may have
both the incentive and capability to evade detection. For
instance, adversaries controlling bank accounts to be used in
money laundering schemes may wish to remain undetected
to continue their malicious activities. They could carefully
manage the everyday transactions on the accounts to make
them appear similar to normal ones, causing the system to
falsely classify them as benign. In essence, in an adversarial
environment, attackers can intentionally manipulate the input
data to RWAD in order to mislead its predictions, leading
to what is known as data poisoning attacks in the litera-
ture. However, studying the adversarial robustness of RWAD
imposes new challenges due to an intriguing characteristic of
RWAD. Specifically, in an RWAD system, the graph is often
not directly accessible and needs to be constructed from raw
data. As illustrated in Fig. 1 (top), entities in the system are
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Fig. 1. Illustration of RW-based anomaly detection and the distinction
between graph-space and feature-space attacks.

represented as vectors in a feature space, and a graph is then
constructed based on the relationships among the entities as
determined by their feature vectors. This kind of graph is
termed as feature-derived graph. For instance, a proximity
graph can be constructed based on feature similarity. This
graph is then fed into the RWAD system, which produces
anomaly scores for each node.

Consequently, there are two potential attack surfaces against
RWAD: graph-space attacks and feature-space attacks.
In graph-space attacks (Fig. 1, bottom), the attacker can
directly modify the structure of the graph, which is a common
assumption made by previous works [22], [23], [24] that
design structural attacks on graphs. In feature-space attacks
(Fig. 1, middle), the attacker does not have direct control over
the graph but can modify the features, which indirectly affects
the graph’s structure. It is worth noting that in the latter case,
where the graph is not directly accessible, feature-space attacks
are deemed more realistic (further explained in Section VII-A).

Unfortunately, previous research treats attacks in the graph
space and feature space rather separately. On the one hand,
many existing works have investigated structural attacks [22],
[24], [25], [26] against a wide range of graph learning models.
On the other hand, another line of research has focused
on studying feature manipulation attacks [27], [28], [29]
primarily in the computer vision domain, where the data
objects represented by features are independent of each other.
In contrast, one unique characteristic of RWAD is that it
examines data objects that are interdependent. Specifically, the
data processing pipeline of RWAD involves transforming the
features into graphs, over which the random walk operates.
That is, the data in the feature space and the data in the
graph space are interdependent in the sense that any modi-
fications to the features will be reflected in the changes in the
constructed graphs. This unique interdependency makes the
interplay between the graph-space and feature-space attacks
possible.

Thus, for the first time, we aim to investigate the adversarial
robustness of RWAD under coupled-space attacks, where the
attackers can explicitly exploit the interdependency between
two coupled data spaces to effectively achieve their mali-
cious goals. Our main motivations for exploring coupled-space
attacks are twofold. First, data manipulation in the feature
space is more realistic since the graph is constructed vir-
tually in the pipeline of which the attacker does not have
direct control. Second, since random walks directly run over
the constructed graphs, an attacker can potentially lever-
age the anticipated data manipulation in the graph space to

guide the modifications in the feature space, which can make
the attack more effective.

Towards this end, we begin with a formal analysis of graph-
space attacks. The simplicity of RWAD allows us to conduct
a hardness analysis. Specifically, we define the attacks in
the graph space as a decision problem. We ask whether an
attacker can reduce the anomaly scores of the target nodes
below a certain threshold, thereby classifying them as benign,
by modifying a limited number of edges in a given graph.
Our in-depth complexity analysis shows that this problem is
NP-hard for both directed and undirected graphs. Furthermore,
since feature-space attacks ultimately modify edges, they can
be viewed as special cases of this problem, and the hardness
results remain applicable. The hardness results serve as the
anchor for us to investigate efficient attack algorithms in both
the graph space and feature space.

We then proceed to design effective graph-space attacks,
which are formulated as an optimization problem with the
objective of minimizing the target nodes’ anomaly scores out-
put by RWAD. Solving this optimization problem encounters
several challenges. Firstly, random walk (PageRank) is an
iterative algorithm that operates on an input graph; thus, any
changes made to the graph will require the iterations to be re-
executed. Consequently, attacks against RWAD will result in
a bi-level optimization where the inner layer involves complex
iteration. Second, the discrete nature of graph structure further
complicates the solving of the optimization. To address these
challenges, we propose two efficient attacks: alterI-attack and
cf-attack. The former is an iterative approach that optimizes
the attack objective by projected gradient descent (PGD) [30]
and updates the random walk model alternatively. The latter
utilizes the closed form of the random walk model to transform
the bi-level optimization into a single-level problem.

Finally, we investigate the more realistic feature-space
attacks. Our major innovation is to use the results from the
virtual graph-space attack as our guidance to design more
powerful feature-space attacks. Specifically, we utilize the
guidance from two aspects: selecting the attack nodes and
formulating an effective attack objective. Through extensive
experiments, we demonstrate that by fully exploring the
dynamics between attacks in coupled spaces, more powerful
attacks could be designed, revealing more realistic security
threats against RWAD systems.

The main contributions are summarized as follows:
• We study the adversarial robustness of RWAD, for the

first time, exploring the interplay between attacks in
coupled spaces.

• We present a deep theoretical analysis of the hardness of
attacking RWAD, which is proved to be NP-hard on both
directed and undirected graphs.

• We propose effective attacks in coupled spaces. In par-
ticular, we innovatively utilize the results from the
graph-space attacks as guidance to design more powerful
feature-space attacks.

• We conduct comprehensive experiments to demonstrate
the effectiveness of our proposed attacks. Especially we
also transfer our attacks to other anomaly detection meth-
ods in the feature space. It is shown that our graph-guided
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feature-space attack remains effective even without know-
ing the target models, demonstrating a realistic threat in
real-world application scenarios.

In summary, our work uncovers a unique vulnerability of
RWAD and unleashes the power of attackers by exploring
the interplay between attacks in coupled spaces, significantly
advancing our knowledge of the adversarial robustness of
RWAD in deployment.

Road Map: Related works (II) ⇒ Target RWAD mod-
els (III) ⇒ Problem statements (IV) ⇒ Complexity analysis
of attacks (V) ⇒ Effective graph-space attacks (VI) ⇒ Graph-
guided feature-space attacks (VII) ⇒ Evaluation (VIII) ⇒

Limitation and Future Work (IX) ⇒ Conclusion (X).

II. RELATED WORKS

A. Graph-Based Anomaly Detection

This paper focus on unsupervised and node-level anomaly
detection on plain and static graph. Random-walk-based tech-
niques [10], [12], [14], [15], [16], [17], [31] discussed in this
paper, exploiting random walk as a similarity or connectivity
measurement. Traditional feature-based techniques [32], [33],
[34] utilize statistical features, such as in and out node
degrees, to extract structural information from graphs and
transform the GAD to usual anomaly detection problem. For
example, OddBall [32] built a regression model based on
the density power law to estimate anomalous local patterns.
These labor-intensive handcrafted features have limitations
on generalizing to unknown anomalies. Beyond handcrafted
features, network-representation-based techniques, such as
DeepWalk [35] and Node2Vec [36], are widely exploited
to extract a more flexible feature representation which can
be used for downstream anomaly detection tasks [37]. Most
recent work mainly focuses on investigating deep learn-
ing based anomaly detection, such as DOMINANT [38],
GAL [20], TAM [39], GLAD [40], and GAD-NR [41].

B. Adversarial Attacks on Graph

Our work belongs to the category of targeted and poisoning
adversarial attacks. Here, we include the most related existing
attacks on graphs. There are some previous research efforts
on the random walk (RW) based models. Reference [42]
reformulate the DeepWalk model as a matrix factorization
form to reduce the bi-level optimization to single-level, and
then optimize the untargeted attack loss by optimizing the
graph spectrum. Reference [43] make further improvement to
make the spectrum-based attack works in a black-box system.
Different from our attacks on RW-based anomaly detection,
they mainly focus on attacking node embedding generated by
RW.

In addition to RW-based model, Nettack [22], Metat-
tack [23] are two strong poisoning attacks for the GCN-based
models. Nettack greedily selects the perturbation edges among
the candidate sets with the largest gradient obtained by incre-
mental updates. Metattack greedily selects the perturbation
edges with the largest gradient obtained by meta-gradient.
Note that, both of these methods can be extended to attack
node features. However, Nettack does not introduce the attack

node selection, and Metattack is only applicable to binary
features. Furthermore, the proximity graph is different from
other graphs. The proximity graph is changing along with
features, while the node feature attack in [22] and [23] have
fixed graph structures. For belief propagation models, [30]
introduced a poisoning attack for graph data. For another clas-
sical graph-based anomaly detection model called OddBall,
[24] proposed BinarizedAttack which is well-designed for the
binary property of edges. For graph contrastive learning, [44]
attack the graph embedding by greedily choosing the most
informative edges. Beyond gradient-based methods, perturbing
the intrinsic property of graphs, such as spectral changes [45]
shows to be more effective, but it is only suitable for untar-
geted attacks. These works are orthogonal to our study.

III. RANDOM-WALK-BASED ANOMALY DETECTION

In this section, we introduce the necessary background on
unsupervised random-walk-based anomaly detection (RWAD).
We first present an overview of the framework with an empha-
sis on the role of random walk (RW) in anomaly detection,
and then give two concrete exemplar RWAD models, which
are also the target models considered in this paper.

A. Overview

1) Input Data as a Graph: In general, RWAD takes a plain
graph as input and produces anomaly scores for the nodes in
the graph as output. In practice, the input graph could be either
directly available or constructed from raw data. Depending
on the levels of accessibility of the graph, we divide RWAD
systems into two types:

• RWAD over directly accessible graph (Di-RWAD): In
this case, the input to RWAD is a graph that represents
relational data in a specific application. For instance, in
recommender systems, the rating towards products given
by customers on E-commerce platforms can be modeled
as a bipartite graph.

• RWAD over indirectly accessible graph (InDi-RWAD):
In this case, the input to RWAD are raw features of
entities, and a graph is constructed as a data preprocessing
step in the pipeline of anomaly detection (Fig. 1, top).
Typically, given the feature vectors, a proximity graph
is constructed, where the nodes represent entities and an
edge exists between two nodes only if they are similar
enough in certain similarity metrics [14], [15], [16], [17].

We note that in both cases, RWAD will operate on graphs;
however, the difference lies in whether the graph is directly
accessible. Later we will see that such a difference is crucial
for determining the attacker’s ability when designing attacks.

2) RW as a Similarity Measurement: The core of unsu-
pervised anomaly detection is to identify data points that
are significantly different from the rest of the population.
RW has been shown to be an effective method for measuring
the similarities of nodes in a graph. Specifically, given a
graph G = (V, E) with its adjacency matrix denoted as
W , we define the transition matrix P = (pi j )|V |×|V | as the
column-normalized version of the adjacency matrix W , where
pi j = wi j/

∑|V |

t=1 wi,t . If vertex i has no outgoing edges
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(i.e.,
∑k+n

t=1 wi,t = 0), we set the transition probability to
0. The widely used Page-Rank algorithm with restart can be
represented as follows:

s⃗ = (1 − α)Ps⃗ + αr⃗ , (1)

where α is the restart rate, a hyper-parameter that controls the
probability of restart; the vector r⃗ specifies the restart strategy,
and s⃗ characterizes the node similarities. With the similarity,
the anomaly score of a node is calculated as the opposite of its
average similarity to all other nodes, or the average similarity
among its neighbors. Next, we present two representative
models to instantiate the Di-RWAD and InDi-RWAD systems.

B. Representative Target Models

1) Di-RWAD: We consider bipartite graphs as a represen-
tative example of directly accessible graphs. We next describe
how to apply the RWAD algorithm to the bipartite graphs of
this kind, which we term as BiGraphRW model.

To begin, we define a bipartite graph G = (U ∪ V, E) as a
graph with two disjoint sets of vertices U = {ui |1 ≤ i ≤ k}

and V = {vi |1 ≤ i ≤ n}, and a set of edges E ⊆ U × V that
connect the vertices in U to the vertices in V . We represent
the edges in E as a binary edge matrix M = (mi j )k × n,
where mi j = 1 if ⟨i, j⟩ ∈ E , and mi j = 0 otherwise. Then,
the adjacency matrix for a bipartite graph can be constructed

as W = (wi j )(k+n)×(k+n) =

(
0 M

MT 0

)
.

For each node u ∈ U , BiGraphRW applies Eqn. 1 with
r⃗ = e⃗u , where e⃗u is a vector with zeros element except node u,
which means that it always restarts from node u. The resulting
vector s⃗u = (1 − α)Ps⃗u + αe⃗u represents the connectivity
scores of node pairs {⟨u, t⟩ |t ∈ U ∪ V }, which quantifies
the similarity between node u and others. By assumption,
a node v tends to have a lower mean similarity score among its
neighbors if it is anomalous. We denote the average neighbor
similarity as S̄v:

S̄v =

∑k
i=1 Miv

∑k
j=1,i ̸= j M jv s⃗ui (u j )∑k

i=1 Miv
∑k

j=1,i ̸= j M jv
, (2)

where s⃗ui (u j ) represent the element corresponding to node
u j in ⃗sui , which is the similarity between node ui and u j .
Anomaly score of node v is in contract to the mean similarity
score S̄v , so we denoted it by

A(v) = 1 − S̄v =

{
anomaly, if A(v) ≥ θ,

normal node, if A(v) < θ,
(3)

where the parameter θ is a given and fixed threshold of the
anomaly detection model.

2) InDi-RWAD: A representative way to apply RWAD to
non-graph data is by constructing a proximity graph. We call
this variant as ProxGraphRW model. In this approach, the
input feature data is represented as X = [x1, x2, · · · , xn], xi ∈

Rd . The first step is to construct a proximity graph according
to the similarity or distance measurement between each pair
of samples. To construct a proximity graph G = (V, E),
the vertices V represent data samples {x1, x2, · · · , xn}, and

the edges imply the similarity among vertices. This can be
achieved through similarity measures, such as Euclidean dis-
tance, cosine similarity, or correlation coefficient. We denote
the similarity function between xi and x j as sim(xi , x j ).
Then, proximity graphs can be constructed by different rules.
In this paper, we take ϵ-Graph [14], [15] as an example,
where for every data sample xi , an edge is connected to x j if
sim

(
xi , x j

)
> ϵ. We define the weighted adjacency matrix as

W = (wi j )n×n , where wi j = sim(xi , x j ) · I(sim(xi , x j ) > ϵ),
and I(·) is an indicator function. With the proximity graph
constructed, ProxGraphRW applies the Eqn. 1 with r⃗ =

1
n ,

which means that the RW restart from any node with equal
probability. The resulting vector s⃗ = (1 − α)Ps⃗ +

α
n contains

the connectivity scores of all nodes, where each element s⃗(v)

quantifies the overall similarity of node v to all other nodes.
Finally, based on the hypothesis that anomalies have low
connectivity to most others, the anomaly score of node v is

A(v) = 1 − s⃗(v), (4)

where s⃗(v) is the element corresponding to node v in s⃗.

IV. PROBLEM STATEMENTS

In this section, we introduce the adversarial environment
that random-walk-based anomaly detection (RWAD) operates
in, and then formally define the attack problem.

A. System and Threat Model

We consider a system consisting of two parties: an analyst
who runs an RWAD algorithm to detect potential anomalies
and an attacker who aims to evade the detection. In practice,
the analyst would first collect data from the environment and
construct a graph, which is fed into the RWAD system for
anomaly detection. However, the attacker could tamper with
the data collection process which will result in a poisoned
graph, leading to the malfunction of the system. For instance,
in online shopping platforms, the attacker may manipulate
some users to provide fake ratings for target items. The
resulting poisoned data can lead to biased recommendations
from the recommender system.

We further introduce the threat model by specifying the
attacker’s knowledge, goal, and capability. By Kerckhoffs’s
principle, we assume a worst-case scenario where the attacker
knows all the data as well as the anomaly detection model,
which is a common assumption employed by many previous
attacks [24], [46]. We assume that the attacker has a set of tar-
get nodes in mind. Initially, the target nodes would have been
determined as abnormal by the RWAD system if no data was
manipulated. The attacker then tries to decrease the anomaly
scores of those target nodes in the hope that they would evade
the detection. To this end, the attacker can manipulate the
data constrained by a certain budget. Specifically, depending
on whether the graph is directly accessible or not, we divide
the attacks into two types:

• Graph-space attack: the attacker can directly modify the
structure of the graph by adding and deleting the edges
under a budget constraint K .
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TABLE I
HARDNESS RESULTS OF PA-RWAD

• Feature-space attack: the attacker can only modify the
features of a set of attack nodes, which will indirectly
cause changes in the graph structure. Considering a prac-
tical scenario that the targeted anomaly nodes are crafted
to have specific malicious functions, we can not modify
their features arbitrarily. Therefore, an indirect feature
attack, aiming to decrease the anomaly scores of target
nodes while keeping their features unchanged, is ideal for
such a problem. Hence, we restrict the selection of attack
nodes to those other than the target nodes.

B. Problem Definition

To facilitate our theoretical analysis, we formally define the
attacks against RWAD as follows.

Definition 1 (PA-RWAD: poisoning attacks against RWAD):
An instance of the problem is defined by a tuple,
(G, T ,A, 2, K , Â, R̂), where G = (V, E) is a network,
T ⊆ V is the set of targets, A : G × V → R is the anomaly
score function, 2 ∈ N is the safety threshold, K ∈ N is
the budget specifying the maximum number of edges that
can be added or removed, Â ⊆ (V × V ) \ E is the set of
edges that can be added, and R̂ ⊆ E is the set of edges
that can be removed. The goal is then to identify two sets,
A∗

⊆ Â and R∗
⊆ R̂, such that |A∗

| + |R∗
| ≤ K , and for

G∗
= (V, (E ∪ A∗) \ R∗) we have:∣∣∣{vi ∈ V : ∀v j ∈T A(G∗, vi ) > A(G∗, v j )

}∣∣∣ ≥ 2.

In practice, the top-2 nodes ranked by their anomaly scores
in descending order are determined as anomalous. Then, the
goal of PA-RWAD is to find a way of modifying the network
by adding and removing edges, so that there are at least 2

nodes with anomaly scores greater than any of the target nodes.
In other words, the target nodes are considered as benign.

We note that although PA-RWAD emphasizes modifying
the structure of the graph, a feature-space attack is still an
instance of PA-RWAD, since the modification of features will
ultimately lead to the changes of the graph.

V. COMPLEXITY ANALYSIS

We now proceed to analyze the computational complexity of
the attacks against RWAD. We summarize the hardness results
in Tab. I.

Theorem 1: The PA-RWAD problem is NP-hard given a
directed graph.

Proof: We will prove that the problem is NP-hard by
showing a reduction from the NP-complete 3-Set Cover prob-
lem. An instance of this problem is defined by a collection
of subsets Q = {Q1, . . . , Q|Q|} of the universe U =

{u1, . . . , u|U |} =
⋃

Qi ∈Q Qi such that ∀i |Qi | = 3, and a
number k ∈ N. The goal is to determine whether there exist

Fig. 2. An example of the construction used in the proof of Theorem 1. The
green dotted arrows represent edges that can be added.

at most k elements of Q that cover the entire universe, i.e.,
Q∗

⊆ Q such that |Q∗
| ≤ k and U =

⋃
Qi ∈Q∗ Qi .

Let (Q, k) be a given instance of the 3-Set Cover problem.
We will now construct an instance of the PA-RWAD problem.
In what follows, let Q(ui ) be the subsets in Q that contain
ui , i.e., Q(ui ) = {Q j ∈ Q : ui ∈ Q j }. Let us also assume
that |Q| ≥ 4, as all smaller instances can be easily solved in
constant time. First, we construct a directed network G Q =

(V, E), where:
• V = U ∪

⋃
Qi ∈Q{Qi , qi , oi } ∪ {h1, h2, h3} ∪⋃

ui ∈U
⋃|Q|−|Q(ui )|

j=1 {xi, j , yi, j , zi, j },

• E =
⋃

ui ∈Q j
{(Q j , ui )} ∪

⋃
oi ∈V

⋃
h j ∈V {(oi , h j )} ∪⋃

xi, j ∈V {(xi, j , ui ), (xi, j , yi, j ), (xi, j , zi, j )}.

An example of this construction (e.g., |U | = 5, |Q| =

3) is presented in Fig. 2. Now, consider the instance
(G Q, T ,A, 2, K , Â, R̂) of the PA-RWAD problem, where:

• G Q is the network we just constructed,
• T = U is the target set,
• A is the anomaly score function with the restart rate

parameter α =
1

|Q|
,

• 2 = n − |U | is the safety threshold,
• K = k is the budget,
• Â =

⋃
Qi ∈Q{(qi , Qi )}, i.e., only edges from qi to

corresponding Qi can be added,
• R̂ = ∅, i.e., none of the edges can be removed.
Since R̂ = ∅, for any solution to the constructed instance

of the PA-RWAD problem, we must have R∗
= ∅. Hence,

we will omit the mentions of R∗ in the remainder of the proof,
and we will assume that a solution consists just of A∗. We next
prove a useful lemma.

Lemma 1: Let A ⊆
⋃

Qi ∈Q{(qi , Qi )}, and let G Q ∪ A =

(V, E ∪ A). We have that:

∀ui ∈U ∀v /∈UA(G Q ∪ A, v) > A(G Q ∪ A, ui )

if and only if ∀ui ∈U ∃(q j ,Q j )∈Aui ∈ Q j .

Proof: From the formula of the anomaly score function,
we have that A(G Q ∪ A, vi ) = 1 − s⃗(G Q ∪ A, vi ), where:

s⃗(G Q ∪ A, vi ) =
α

n
+ (1 − α)

∑
v j ∈V s⃗(G Q ∪ A, v j )Pj,i .

Therefore, we have thatA(G Q∪A, vi ) > A(G Q∪A, v j ) if and
only if s⃗(G Q ∪ A, vi ) < s⃗(G Q ∪ A, v j ). Let A(ui ) be the set
of Q j containing ui that got connected to the corresponding
node q j via the edges in A, i.e., A(ui ) = {Q j ∈ Q : ui ∈ Q j ∧
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(q j , Q j ) ∈ A}. We now compute the values of s⃗(G Q ∪ A, vi )

for all nodes in V :
• s⃗(G Q ∪ A, qi ) = s⃗(G Q ∪ A, xi, j ) = s⃗(G Q ∪ A, oi ) =

α
n =

1
|Q|n , as nodes qi , xi, j , and oi do not have any

predecessors,
• s⃗(G Q ∪ A, yi, j ) = s⃗(G Q ∪ A, zi, j ) =

α
n + (1 −α)s⃗(G Q ∪

A, xi, j )
1
3 =

α
n +

(1−α)α
3n =

(4−α)α
3n =

(
4−

1
|Q|

)
3|Q|n , as the only

predecessor of nodes yi, j and zi, j is the node xi, j with
out-degree 3,

• s⃗(G Q ∪ A, hi ) =
α
n + (1 − α)

∑
o j ∈V s⃗(G Q ∪ A, o j )

1
3 =

α
n +

|Q|(1−α)α
3n =

((1−α)|Q|+3)α
3n =

|Q|+2
3|Q|n , as the prede-

cessors of hi are all |Q| nodes o j , each with out-degree
3,

• if (qi , Qi ) /∈ A then s⃗(G Q ∪ A, Qi ) =
α
n =

1
|Q|n , as such

node Qi has no predecessors,
• if (qi , Qi ) ∈ A then s⃗(G Q ∪ A, Qi ) =

α
n +(1−α)s⃗(G Q ∪

A, qi ) =
α
n + (1−α)α

n =
2|Q|−1
|Q|2n , as the only predecessor

of such node Qi is the node qi ,
• s⃗(G Q ∪ A, ui ) =

α
n + (1 − α)

∑
Q j ∈Q(ui )

s⃗(G, Q j )
1
3 +

(1 − α)
∑

xi, j ∈V s⃗(G, xi, j )
1
3 =

α
n +

|Q|(1−α)α
3n +

|A(ui )|
(1−α)2α

3n =
((1−α)|Q|+3+|A(ui )|(1−α)2)α

3n =

|Q|+2+|A(ui )|
(

1−
1

|Q|

)2

3|Q|n , as the predecessors of ui are
|Q(ui )| nodes Q j , as well as |Q| − |Q(ui )| nodes xi, j ,
each with out-degree 3.

We now prove the main equivalence of the lemma. Assume
that ∀ui ∈U ∀v /∈UA(G Q ∪ A, v) > A(G Q ∪ A, ui ). In particular,
it implies that: ∀ui ∈U s⃗(G Q ∪ A, ui )− s⃗(G Q ∪ A, h1) > 0. By
substituting the values in the inequality, we get:

∀ui ∈U

|A(ui )|
(

1 −
1

|Q|

)2

3|Q|n
> 0,

which in turn implies that ∀ui ∈U |A(ui )| > 0. Hence, we have
that for every ui ∈ U there exists at least one Q j such that
ui ∈ Q j and (q j , Q j ) ∈ A.

To prove the implication in the other direction, assume that
∀ui ∈U ∃(q j ,Q j )∈Aui ∈ Q j . Hence, we get that ∀ui ∈U |A(ui )| >

0, which implies that: ∀ui ∈U s⃗(G Q ∪ A, ui ) ≥
|Q|+2+

(
1−

1
|Q|

)2

3|Q|n .

By comparing this value to the values computed above,
we have that ∀ui ∈U , ∀v /∈U :

s⃗(G Q ∪ A, v) <
|Q| + 2 +

(
1 −

1
|Q|

)2

3|Q|n
≤ s⃗(G Q ∪ A, ui ),

which in turn implies that:

∀ui ∈U ∀v /∈U A(G Q ∪ A, v) > A(G Q ∪ A, ui ).

This concludes the proof of the lemma. □
Let Q∗

⊆ Q be a solution to the given instance of the 3-
Set Cover problem, i.e., |Q∗

| ≤ k and ∀ui ∈U ∃Q j ∈Q∗ui ∈ Q j .
From Lemma 1 we have thatA(G Q∪A∗, v) > A(G Q∪A∗, ui )

where A∗
= {(qi , Qi ) : Qi ∈ Q∗

}. Hence, in network G Q∪A∗

all 2 = n −|U | nodes other than the nodes in U have greater
anomaly scores than all the nodes in U , and |A∗

| ≤ k = K .

Fig. 3. An example of the construction used in the proof of Theorem 2. The
red dashed lines represent edges that can be removed.

Therefore, A∗ is a solution to the constructed instance of the
PA-RWAD problem.

To prove the implication in the other direction, assume that
A∗ is a solution to the constructed instance of the PA-RWAD
problem. In particular, it implies that |A∗

| ≤ K = k and
∀ui ∈U ∀v /∈UA(G Q ∪ A, v) > A(G Q ∪ A, ui ). From Lemma 1
we have that ∀ui ∈U ∃(q j ,Q j )∈Aui ∈ Q j . Therefore, {Qi ∈ Q :

(qi , Qi ) ∈ A∗
} is a solution to the given instance of the 3-Set

Cover problem.
We have shown that the constructed instance of the PA-

RWAD problem has a solution if and only if the given instance
of the 3-Set Cover problem has a solution, which concludes
the proof of NP-hardness. □

Theorem 2: The PA-RWAD problem is NP-hard given an
undirected graph.

Proof: We will prove that the problem is NP-hard by
showing a reduction from the NP-complete Finding k-Clique
problem. An instance of this problem is defined by a network
G ′

= (V ′, E ′), and a number k ∈ N. The goal is to determine
whether there exist k nodes that induce a clique in G ′.

Let (G ′, k) be a given instance of the Finding k-Clique
problem. We will now construct an instance of the PA-RWAD
problem. Let n′

= |V ′
|, and let d(G, v) be the degree of v in

network G, i.e., d(G, v) = |{w ∈ V : (v, w) ∈ E}|. First,
we construct a undirected network G = (V, E), where:

• V = V ′
∪ {t} ∪

⋃
v′

i ∈V ′

⋃n′
+k−d(G ′,v′)−3

j=1 {xi, j },

• E = E ′
∪

⋃
v′

i ∈V ′{(t, v′

i )} ∪
⋃

xi, j ∈V {(v′

i , xi, j )}.

An example of this (e.g., |V ′
| = 4, k = 3) construc-

tion is presented in Fig. 3. Now, consider the instance
(G, T ,A, 2, K , Â, R̂) of the PA-RWAD problem, where:

• G is the network we just constructed,
• T = {t} is the target set,
• A is the anomaly score function with the restart rate

parameter α = 0,
• 2 = n − (n′

− k + 1) is the safety threshold,
• K =

k(k−1)
2 is the budget,

• Â = ∅, i.e., none of the edges can be added,
• R̂ = E ′, i.e., only edges existing in G ′ can be removed

from G.
Since Â = ∅, for any solution to the constructed instance

of the PA-RWAD problem, we must have A∗
= ∅. Hence,

we will omit the mentions of A∗ in the remainder of the proof,
and we will assume that a solution consists just of R∗.

From the formula of the anomaly score function with α =

0 we have that A(G, vi ) = 1 − s⃗(G, vi ), where:

s⃗(G, vi ) =
∑

v j ∈V s⃗(G, v j )Pj,i .
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Therefore, we have that A(G, vi ) > A(G, v j ) if and only if
s⃗(G, vi ) < s⃗(G, v j ).

Moreover, from Perra and Fortunato [47], we have that for
the stationary distribution s⃗ of this form (i.e., for α = 0) in an
undirected network G we have that s⃗(G, vi ) ∼ d(G, vi ), i.e.,
the value of the entry in s⃗ for a given node is proportional
to its degree. Therefore, we have that A(G, vi ) > A(G, v j )

if and only if d(G, vi ) < d(G, v j ). Let us now compute the
values of d(G, vi ) for all nodes in G:

• d(G, t) = n′, as the node t is connected with all n′ nodes
v′

i ,
• d(G, xi, j ) = 1 < d(G, t), as each node xi, j is only

connected with the node v′

i ,
• d(G, v′

i ) = 1 + d(G ′, v′

i ) + n′
+ k − d(G ′, v′

i ) − 3 =

n′
+ k − 2 ≥ d(G, t), as each node v′

i is connected with
the node t , d(G ′, v′

i ) nodes from V ′, as well as n′
+ k −

d(G ′, v′

i ) − 3 nodes xi, j .
Since 2 = n − (n′

− k + 1), all nodes xi, j have a smaller
degree than t , and the total number of xi, j is n − n′

− 1,
we need at least k out of n′ nodes in V ′ to have a smaller
degree than t in order for the safety threshold to be satisfied.
However, they all have equal or greater degrees than t . Hence,
the safety threshold is not satisfied in G.

Since the removal of edges from R̂ can only change the
degrees of nodes in V ′, we need to decrease the degree of k
of these nodes to a value smaller than that of t . For each of
these k nodes we have to remove at least 1 edges incident
with it, where:

1 = d(G ′, t) − d(G ′, v′

i ) + 1 = n′
+ k − 2 − n′

+ 1 = k − 1.

Let V ∗
⊆ V ′ be a solution to the given instance of the

Finding k-Clique problem, i.e., a set of k nodes forming a
clique in G ′. Since R̂ = E ′ and the degree of each node in
k-clique is k − 1, we have that V ∗

× V ∗
⊆ R̂, and removing

V ∗
× V ∗ from G decreases the degree of k nodes from V ′

by 1 = k − 1 each. Therefore, V ∗
× V ∗ is a solution to the

constructed instance of the PA-RWAD problem.
To prove the implication in the other direction, assume that

R∗ is a solution to the constructed instance of the PA-RWAD
problem. At least k1

2 =
k(k−1)

2 of the removed edges have to
be incident with the k nodes from V ′ contributing to the safety
threshold. However, since the total budget is K =

k(k−1)
2 , all

of the removed edges have to be incident with the k nodes
from V ′ contributing to the safety threshold, and k(k−1)

2 edges
incident with k nodes constitute a clique. Since we have that
R̂ = E ′, the same edges constitute a k-clique in G ′. Therefore,⋃

(v′
i ,v

′
j )∈R∗{v′

i , v
′

j } is a solution to the given instance of the
Finding k-Clique problem.

We have shown that the constructed instance of the PA-
RWAD problem has a solution if and only if the given
instance of the Finding k-Clique problem has a solution, which
concludes the proof of NP-hardness. □

VI. PRACTICAL GRAPH-SPACE ATTACKS

In this section, we investigate practical attacks in the graph
space. We note that the graph-space attack itself is important
in the case where the graph is directly accessible. Moreover,

as we will show later, the results of graph-space attacks
provide insightful guidance for feature-space attacks.

A. Attack Formulation

We begin by formulating the decision problem PA-RWAD
as an optimization problem. We use G = (V, E) with its
corresponding adjacency matrix W to represent the original
clean graph. We assume that the anomaly detection system
predicts node v as an anomaly if the anomaly score A(v) is
greater than a threshold θ . The attacker aims to decrease the
number of nodes in a given target set T ⊂ V that are identified
as anomalies by modifying at most K edges in the graph.
To represent the edge manipulations, we denote the modi-
fication by a binary matrix B = (buv)(|V |×|V |), where the
element buv ∈ {0, 1}. If buv = 0, the edge ⟨u, v⟩ remains
unchanged, and buv = 1 lead to add/delete of edge ⟨u, v⟩.
Then the attack graph can be represented by |W − B|. In this
paper, we consider undirected graphs where the adjacency
matrix is always symmetric, and the budget constraint can be
represented as

∑
u>v buv ≤ K . Then the graph-space attack

problem can be formulated as follows:

min
B

∑
v∈T

I(A(v) > θ),

s.t. buv ∈ {0, 1},
∑
u>v

buv ≤ K , (5)

where I(·) is a indicator function, I(A(v) > θ) = 1 if the
anomaly scores of node v is greater than θ .

B. Attack Method

To address the non-differentiable issue of the binary values
in B, we adopt a relaxation strategy by representing buv in
a continuous space that ranges from 0 to 1. This is denoted
as B̃, which is subsequently converted back to binary form B̄
after solving the optimization problem. To handle the discrete
objective function in Eqn. 5, we replace it with the sum of
anomaly scores among target nodes, La(B̃) =

∑
v∈T A(v),

then we can re-formulate the attack problem as:

min
B̃

La(B̃) =

∑
v∈T

A(v),

s.t. b̃uv ∈ [0, 1],
∑
u>v

b̄uv ≤ K , (6)

where B̃ is the relaxed and continuous adjacency matrix, B̄ =

(b̄i j ) is the discrete version of B̃.
To solve the challenging bi-level optimization problem,

we propose two strategies: alternative iteration attack (alterI-
attack) and closed-form attack (cf-attack). In brief, the
alterI-attack iterates the inner RW model and the attack opti-
mization alternatively to approximate the bi-level optimization,
while the cf-attack transforms the bi-level optimization into a
single-level problem. We first introduce the alterI-attack and
then highlight the difference in the cf-attack.
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1) alterI-Attack: The optimization of problem (6) remains
a challenging task due to the need to reverse the continuous
variable B̄ to binary B̄ while satisfying the budget constraint.
To overcome this difficulty, we first use projected gradient
descent (PGD) to efficiently optimize B̃ without considering
the budget constraint

∑
u>v b̄uv ≤ K . Instead, we add l2-norm

regularization on the variable B̃: La(B̃) =
∑

v∈T A(v) +

λ||B̃||2, where the λ is regularization coefficient. Then,
we obtain the binary matrix B̄ by selecting the top-K elements
from B̃. This approach allows us to efficiently approximate
the constrained optimization problem while ensuring that the
attack budget is satisfied. The advantage of our optimization
strategy is that the continuous solution B̃ we obtained does
not depend on the attack budget K . This implies that we
can reuse the same B̃ for various K , eliminating the need
for recalculations.

However, optimizing the relaxed optimization problem is
still challenging because the anomaly score A(v) in the loss
function La(B̃) depends on the variable B̃ in a complex way.
After updating B̃, obtainingA(v) requires iterating over Eqn. 1
dozens of times to get the converged node similarity vector s⃗,
and the gradient needs to be traced back to each iteration.
To address this issue, we only iterate over Eqn. 1 once instead
of multiple times. The detailed procedures are summarized
in Alg. 1 and Fig. 4 (top). Firstly, we update the adjacency
matrix with W̃ = |W − B̃| (line:5), and then we update
the similarity score A(v) based on W̃ for one step using
Eqn. 1 and then obtain the anomaly score with Eqn. 3 or 4
(line:6-9). Next, we update attack loss La(B̃) based on A(v)

(line:10), and calculate the projected gradient to optimize B̃
for one step (line: 11-15). Repeating the alternative iteration
leads to the convergence of the inner model s⃗ and also the
continuous attack variable B̃. After the iterations, we keep the
top-K elements in B̃ to obtain B̄ and the others are set to
zeros (line:17-18). Finally, the attacked graph is obtained by
Ŵ = |W − B̄| (line:19). This algorithm is also suitable for
weighted graphs in which the weights on edges are in [0, 1],
and the final solution is to modify K edge weights while the
other weights remain unchanged.

2) cf-Attack: While the alterI-attack approach is feasible,
the one-step update of the inner model is a simple estimation
that may not provide accurate attack loss during the itera-
tion. To address this issue and obtain accurate attack loss,
we employ the closed-form solution of the inner model to
transform the bi-level optimization problem into a single-level
problem. According to [48] and [49], the inner model (Eqn. 1)
has closed-form solution as follows:

s⃗ = α(I − (1 − α)P)−1r⃗ , (7)

where I is an identity matrix. With the closed-form solution,
we can directly obtain the accurate anomaly scores after the
update of B̃. In contrast to the alterI-attack, which iterates the
inner model once after updating B̃, our innovative cf-attack
approach substitutes the Eqn. 1 (line:7) with Eqn. 7 to obtain
the accurate connectivity scores s⃗ for current B̃, and others
remain the same.

Algorithm 1 Graph-Space Attack
1: Input: Graph with adjacency matrix W , attack budget K ,

attack iteration T , learning rate η.
2: Output: Attacked graph with adjacency matrix Ŵ .
3: function ALTERI-ATTACK(W , K , T , η)
4: for t = 1 to T do
5: Update adjacency matrix: W̃ = |W − B̃|.
6: for each node v in target set T do
7: Update similarity scores s⃗ with Eqn. 1.
8: Update anomaly score A(v) based on s⃗.
9: end for

10: Update objective function La(B̃) with A(v).
11: for each edge b̃uv in B̃ do
12: Calculate gradient guv = b̃uv − η

∂L(B̃)

∂ b̃uv

13: Project guv into [0, 1]

14: Update b̃uv in B̃
15: end for
16: end for
17: Choose top-K edges in B̃ to obtain B̄:
18:

b̄uv =

{
b̃uv if b̃uv ∈ topK (B̃),

0 otherwise.

19: Obtain attacked graph Ŵ = |W − B̄|.
20: return Ŵ .
21: end function

Fig. 4. Illustration of proposed attacks.

C. Complexity Analysis

While cf-attack offers a more accurate formulation than
alterI-attack, it comes with the cost of potential time con-
sumption when calculating the matrix inverse, particularly for
graphs with a large number of nodes or edges. In contrast,
alterI-attack does not encounter such a problem, making it a
more efficient option for such scenarios. Both cf-attack and
alterI-attack have their own unique advantages.

Our alterI-attack has the complexity of O(T (|E |+2|V |
2)).

First, we need to update the anomaly scores by Eqn. 1,
in which the time complexity is O(|E |) because it transits
through all edges in the graph. Our loss function includes a l2-
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norm on the variable B̃, which requires O(|V |
2) computation.

Then, we take the gradient for each element in B̃, whose
complexity is O(|V |

2). We repeat the process for T steps, then
the total complexity for alterI-attack is O(T (|E |+2|V |

2)). For
cf-attack, we update the anomaly score by the Eqn. 7, which
takes the complexity of O(|V |

2.21) [50] for sparse matrix
inverse. Hence, the total complexity is O(T (|V |

2.21
+ |E |)).

VII. GRAPH-GUIDED FEATURE-SPACE ATTACKS

A. Motivation for Feature-Space Attacks

Previously, we presented effective graph-space attacks
against Di-RWAD. However, for InDi-RWAD, where the
graphs are not directly accessible, the realizability of the
attacks becomes a serious concern: the attacker cannot directly
modify the edges in a virtual graph space. Instead, in many
practical application scenarios, what the attacker can modify
are the attributes associated with the entities in their control.
For example, when it comes to network intrusion detec-
tion, each TCP connection represents an entity or node, and
attackers can manipulate certain TCP connections by altering
attributes such as connection duration, protocol type, and the
number of urgent packets. Such manipulations will change the
structure of the proximity graph in the ProxGraphRW model to
become perturbed, which can help shield the targeted anomaly
TCP connection from being detected.

Thus, investigating feature-space attacks against InDi-
RWAD is of significant practical importance. In particular,
we consider the scenario where an attacker can manipulate
a set of entities (corresponding to nodes in the constructed
proximity graph) and modify their features to assist a group
of target nodes in avoiding detection. We explore the con-
nection between graph-space and feature-space attacks and
demonstrate how guidance from graph-space attacks can be
leveraged to construct effective feature-space attacks.

B. Attack Formulation

Consider a set of entities with features X =

[x1, x2, · · · , xn], where xi ∈ X denotes the feature vector
associated with entity i . As introduced in Section III-B.2,
a proximity graph can be constructed from X, where the
nodes represent those entities and edges indicate similar node
pairs. An attacker aims to allow a set of target entities (nodes)
T to evade detection. We assume that the attacker has control
of a set of attack nodes Z such that the features of the
nodes in Z can be arbitrarily modified in a certain domain
X . To limit the attacker’s ability, we make the restriction
that Z ∩ T = ∅ and |Z| ≤ K ′. For an attack node i ∈ Z ,
we denote the modified feature vector as x̂i . The manipulated
feature matrix is X̂. We note that since the manipulation
of the features leads to the change of graph structure, the
anomaly score function A(v; X̂) depends on the features X̂.
Then, we can formulate the feature-space attack as follows:

min
x̂i ,i /∈T

L(X̂) =

∑
v∈T

I(A(v; X̂) > θ),

s.t. x̂v = xv, ∀v ∈ T , x̂i ∈ X ,

Z = {i |x̂i ̸= xi }, |Z| ≤ K ′. (8)

C. Two Levels of Guidance From Graph-Space Attacks

Applying the gradient-descent method to solve problem (8)
faces a crucial challenge: while gradient descent can be used to
optimize the node features, it is hard to decide which nodes are
to be manipulated. In other words, it is nontrivial to guarantee
the constraint |Z| ≤ K ′ while preserving optimization perfor-
mance. We adopt a divide-and-conquer strategy to tackle this
problem: we first select up to K ′ nodes as the attack nodes
and then utilize gradient descent to optimize node features.
In particular, we show that the results from graph-space attacks
can be innovatively utilized to guide both the selection of
attack nodes and feature optimization.

Specifically, given a proximity graph G, we can leverage
the attacks in Section VI to produce a poisoned graph G′.
Even though G′ might not be directly realized, it represents an
excellent candidate in the graph space with which the target
nodes T could evade detection with high probability. Thus,
our intuition is to manipulate features so that the resulting
proximity graph would approximate G′. To this end, we utilize
the guidance from the following two aspects.

a) Guidance on attack node selection: In the graph-space
attack, the nodes involved in the structure modification might
have a more significant impact on the attack goal. We denote
the set of edges/non-edges modified by the attacker as Ea .
Intuitively, the modification of Ea will influence the anomaly
scores of the targets most. To preserve such an influence,
we set the attack nodes Z as those ones incident to the
edges/non-edges in Ea . Note that we can always easily adjust
the budget in the graph-space attack such that the constraint
|Z| ≤ K ′ is satisfied.

After fixing the attack nodes Z , we can follow a similar
approach in the graph-space attack to optimize the features.
Specifically, we replace the indicator function in (8) with the
sum of anomaly scores of target nodes. For discrete features,
we relaxed their discrete feature domain to the continuous
space denoted by X̃ . Then, let x̃i ∈ X̃ denote the relaxed
feature, and X̃ = {x̃i |i ∈ V }, the feature-space attack can be
formulated as the following optimization problem:

min
x̂i ∈X̃ ,i∈Z

La(X̃) =
∑

v∈T A(v; X̃). (9)

We term this type (with objective function La) of
feature-space attacks as G-Guided. We can straightforwardly
adopt the two algorithms alterI-attack and cf-attack to solve
the optimization problem (9), resulting in two variants named
G-Guided-alterI and G-Guided-cf.

b) Guidance on reformulation of attack objective:
Beyond the selection of attack nodes, the poisoned graph
G′ obtained from the graph-space attack can provide vital
information for optimizing the features. Specifically, we aim to
optimize the features such that the proximity graph constructed
from the modified features would approximate G′ as much
as possible. To this end, we reformulate the attack objective
function as follows:

Lg(X̃) =

∑
{(i, j)|b̄i j >0}

i/j∈Z

|sim(xi , x j ) − ŵi, j |, (10)
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where ŵi j is the element in the attacked adjacency matrix Ŵ .
This objective function aims to push the similarity between
control nodes xi and other nodes x j (denoted by sim(xi , x j ))
close to the manipulated edges ŵi, j in the poisoned graph G′.
Intuitively, minimizing Lg allows us to approximate an inverse
problem: given G′, find the node features from which G′ can
be constructed. Since (10) is a single-level function, we can
directly adopt PGD (similar to the graph-space attack) to solve
the optimization problem. We term this type (with objective
function Lg) of feature-space attacks as G-Guided-plus. The
attack algorithm in the feature space is summarized in Alg. 2
and Fig. 4 (bottom).

Algorithm 2 Feature-Space Attack

1: Input: Feature matrix X̃, attack nodes Z , attack iteration
T , learning rate η.

2: Output: Attacked feature matrix X̂.
3: function FEATUREATTACK(X̃, Z , T , η)
4: for t = 1 to T do
5: Construct graph based on X̃ (Section III-B.2).
6: Update similarity scores s⃗ with Eqn. 1.
7: Update the anomaly scores based on s⃗ (Eqn. 4).
8: Update objective function L(X̃).
9: for each attack nodes x̃i , i ∈ Z do

10: Calculate gradient gi = x̃i − η
∂L(X̃)

∂ x̃i
.

11: Project gi, j into the feasible set X̃ .
12: Update x̃i, j in X̃.
13: end for
14: end for
15: Rounding the attacked feature:

x̂i =

{
round(x̃i j ) if feature j is discrete,
x̃i j otherwise.

return Attacked feature matrix X̂.
16: end function

The perturbed graph obtained from the graph-space attack
serves as a valuable source of information. It not only
highlights the crucial nodes that should be targeted by the
feature-space attack but also suggests how the node features
should be modified to maximize the impact on the anomaly
score calculation.

VIII. EXPERIMENTS

In this section, we evaluate the performances of our pro-
posed attacks by answering these four major questions: 1) Are
our proposed graph-space attacks effective? 2) What are the
preferences of the proposed graph attack? 3) How effective
are the graph-guided feature-space attacks? 4) How is the
transferability of the graph-guided feature-space attacks?

A. Datasets and Experiment Settings

We consider four datasets that are commonly used for
graph-based anomaly detection: Paper-Author, Magazine,
KDD-99, and MINIST (outlier). Among them, the first two
are bipartite graphs while the latter two datasets are feature

data. Below is the detailed description. All datasets, source
code for our proposed attacks, and evaluated baselines are
in our GitHub link.1

• Paper-Author [10]: This dataset contains papers crawled
from the arXiv preprint database. Nodes U represent
papers, while nodes V represent authors. An edge ⟨u, v⟩

indicates that the author v is shown in the paper u.
We randomly sample 10, 000 records and delete nodes
with degrees lower than 5, resulting in |U |, |V | =

2311, 405. We manually inject 10% of anomaly nodes
following [34].

• Magazine: This dataset contains Amazon Reviews Data2

under the category of Magazine Subscriptions. We ran-
domly sample 100, 000 records and removed nodes
with degrees lower than 3, resulting in |U |, |V | =

1079, 1180 nodes. We also inject 10% of anomaly nodes
manually following [34].

• KDD-99 [15]: The dataset contains network intrusion data
with 41 features and 4 types of attacks. We randomly
sample 10, 000 benign data and 100 anomaly data for
the experiment.

• MINIST (outlier): This is a subset of the MINST hand-
written digits dataset, created for the outlier detection
task in Outlier Detection DataSets.3 It contains a total
of 7603 images, with 6903 images of digit-0 regarded
as normal points and 700 images of digit-6 regarded as
outliers. Each sample has 100 features.

B. Experimental Settings

We conduct our experiments on Ubuntu 20.04 system
with an NVIDIA GeForce RTX 3090 GPU, Python 3.7, and
PyTorch 1.10.0. All the experiments are repeated 10 times with
different random seeds, and different target nodes are sampled.

1) Target Nodes and Budgets: For attacking BiGraphRW
model, we sample 5 target nodes from the top 100 anomaly
nodes, while in ProxGraphRW model, we sample 20 target
nodes from the top 100 anomaly nodes. We set the attack
edge budget proportion to the sum of target node degrees (e.g.,
budget 10% : K = 0.1×

∑
v∈T d(v), where d(v) is the degree

of node v). Setting the budget associated with node degree is
commonly adopted in targeted attacks such as Nettack [22],
[42]. In feature-space attacks, we set the number of attack
nodes Z as the number of nodes involved in the alterI graph-
space attack. Then the attack intensity is associated with the
attack budget in the graph space attack.

2) Evaluation Metrics: Our main focus is to evaluate the
effectiveness of our proposed method facilitating target nodes
to evade detection under different detection thresholds. Usu-
ally, the detection threshold θ is set to the proportion of data
size, and we evaluate the level of detect ratio as the top 5% and
10%. We then use the evasion rate ER of target nodes under
these detection thresholds as the main metric. Specifically, the
evasion rate is computed as ER = n0/|T |, where n0 is the
number of target nodes not shown in the top 5% or 10%

1https://github.com/Yuni-Lai/CoupledAttackRW
2https://nijianmo.github.io/amazon/, accessed May 2023
3http://odds.cs.stonybrook.edu/, accessed May 2023
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anomaly scores (i.e., evaded successfully). Besides, we also
evaluate the average anomaly scores of target nodes.

3) Baselines: We evaluate the effectiveness of our proposed
attacks against several baselines for both graph-space attacks
and feature-space attacks.

a) Graph-space attack: The most relevant prior work
is [42]. Although this work also proposes a targeted attack
for the RW model, it is specific to the DeepWalk model and
cannot be directly applied to our RWAD systems. Therefore,
we transfer its targeted attack to our model. Besides, we also
adopt two common baselines RndAdd and DegAdd follow-
ing [42].

• RndAdd: This baseline randomly adds candidate edges,
where the candidate edges are the edges incident to target
nodes.

• DegAdd: This baseline adds candidate edges with the
top-K highest degrees, where the candidate edges are also
the edges incident to target nodes.

• DeepWalk [42]: In this baseline, we transfer the attack
designed for DeepWalk to RWAD models.

• Our methods: alterI and cf are our proposed attacks with
alternative iteration and closed-form solution, respec-
tively.
b) Feature-space attack: To evaluate the effectiveness of

our graph-guided attack in node selection, we include random
selection as a baseline for comparison.

• VanillaOpt: This baseline randomly selects attack nodes
from candidates and optimizes node features with the
objective function La(X̃) in (9) with strategy alterI.

• Our methods: We use the graph-space attacks to guide
the selection of attack nodes and choose La(X̃) as the
attack objective function, resulting in two attack methods
G-guided-alterI and G-guided-cf, which adopt alterI
and cf to optimize node features respectively. In addition,
when the objective function Lg(X̃) (10) is selected, the
attack method is G-guided-plus.

4) Hyper-Parameters: Grid search is employed to find
the optimal hyper-parameters in all the attack methods over
different datasets. For BiGraphRW model, the regulariza-
tion parameter λ = 1 × 10−6, learning rate lr = 1.0,
60 epochs with SGD optimizer. For ProxGraphRW model,
we evaluate proximity graphs constructed with cosine sim-
ilarity (Cos(xi , x j ) =

<xi ,x j >

||xi || ||x j ||
) and correlation similarity

(Corr(xi , x j ) =
<xi −x̄i ,x j −x̄ j >

||xi −x̄i || ||x j −x̄ j ||
). The similarity threshold ϵ

for constructing the graph is 0.8 for the KDD-99 dataset and
0.5 for the MNIST dataset; We employed the regularization
parameter λ = 1 × 10−4, learning rate lr = 1.0, 35 epochs
for the KDD-99 dataset and 100 for the MNIST dataset
with Adam optimizer in the graph-space attack. In feature-
space attack, learning rate lr = 1.0, 500 epochs with Adam
optimizer.

C. Performance of Graph-Space Attacks

To begin with, we evaluate the performance of the target
RWAD models over corresponding datasets. As shown in
Tab. II, both models achieved an AUC (area under reception

TABLE II
AUC OF RWAD

TABLE III
GRAPH ATTACK RESULTS ON BiGraphRW MODEL

curve) of at least 0.89, demonstrating a strong ability to
identify anomalies.

1) Effectiveness of Attacks: We present the evasion rates ER
of those attack methods under different detection levels (top-
5%/10%) in Tab. III and IV. We observe that our proposed
graph attack methods, alterI and cf, significantly outperform
other baselines on all datasets. For instance, at the detection
level of top-5%, our results indicate that our proposed attack
on BiGraphRW model is highly effective, achieving an evasion
rate of over 85% with a budget of 40.0%. Similarly, for
ProxGraphRW model, with a budget of 60.0%, the evasion
rate (under detection threshold top-10%) is over 80% on
the MNIST dataset. Since the MNIST dataset is relatively
easier to attack, we report the attack performance at a higher
detection threshold. The reason why the DeepWalk method
does not exhibit a strong attack effect could be attributed to its
transferability across different types of random walk models.

Comparing alterI and cf attack, it was observed that cf
attack slightly outperforms alterI in most cases. In our exper-
iments, we observe that cf can achieve significantly lower
attack loss in the continuous domain (i.e., B̃). However, when
discretizing the optimization results, the attack performance
is not guaranteed to be preserved. While cf is generally
more effective (also observed for feature-space attacks in
Section VIII-D), alterI is more efficient on larger graphs such
as KDD-99 and MNIST (see Tab. V).

2) Preferences of Graph Attack: We further present a more
detailed analysis of the graph attack results in Fig. 5, in which
Fig. 5(a) and 5(b) show the proportion of the attacked nodes
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TABLE IV
GRAPH ATTACK RESULTS ON ProxGraphRW MODEL

Fig. 5. Graph-space attack (alterI) result analysis on KDD-99.

(to the total number of nodes) corresponding to different
budgets. On average, only about 1% − 6% (KDD-99) and
0.3% − 2.7% (MNIST) of nodes are involved in the edge
modification under various budgets (Fig. 5(b)). In Fig. 5(c),
we present the node degrees of attack nodes and others, and

Fig. 6. Feature-space attack results.

Fig. 7. Result analysis of feature-space attacks.

we observe that the attacker prefers nodes with lower degrees
as attack nodes. Fig. 5(d) presents the weights changed in
the attack. We observe that the attacker tends to make larger
weight changes in the K attack edges. This is because we
choose the top-K edges in priority of the values in B̃, and
a higher value of b̃i j leads to larger weight change. The
attacker mainly adds/deletes edges between target nodes and
other nodes (Fig. 5(e)), and the target-other edge modification
tends to increase the degree of target nodes (Fig. 5(f)). These
actually provide convenience for our graph-guided feature
attack with attack loss Lg(X̃), where the target node features
are fixed (the edges between target-target are fixed) and the
attack nodes can be optimized to be close to the desired edge
weights (the edges between target nodes and control nodes).
We observe similar phenomena in the MNIST dataset.

D. Performances of Graph-Guided Feature-Space Attacks

First of all, to limit the attack intensity, we set the number
of control nodes |Z| as the number of nodes involved in the
graph-space attack. As mentioned before in Section VIII-C.2,
the number of nodes involved in the graph-space attack ranges
from 1% − 6% in the KDD-99 dataset and 0.3% − 2.7% in
the MNIST dataset with various edge manipulation budgets.
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TABLE V
RUNTIME COMPARISON OF ALTERI AND CF-ATTACK

1) Effectiveness of Attacks: We compare the performances
of these feature-space attacks in Fig. 6. Our analysis shows
that G-guided-alterI outperforms the VanillaOpt method,
achieving much lower anomaly scores and higher evasion
rates. These two models are only different in the selection of
attack nodes, which indicates the effectiveness of using guid-
ance from graph-space attacks in node selection. Comparing
the performance of the alterI and cf attack strategies under
La , we observe that cf-attack also improves the performance,
although the side effect is that cf-attack takes about 7 times
longer than alterI in our experiments (Tab. V). Additionally,
G-guided-plus has a higher evasion rate than G-guided-alterI
and G-guided-cf in most cases, indicating the advantage of
using the attack loss Lg as further guidance for feature attack.

2) Unnoticeability of Attack: In Fig. 7, we provide an
analysis of the feature attack highlighting its advantage of
unnoticeability. Specifically, we visualize the control nodes’
original degree in Fig. 7(a) and Fig. 7(c). The manipulation
in the feature space will then lead to the perturbation in
the graph space. In Fig. 7(b) and Fig. 7(d), in order to
quantify the perturbation volume, we present the ratio of edges
modified by the feature-space attack on the y-axis and the ratio
of edges modified by the graph-space attack x-axis. These
ratios are proportionate to the original graph’s total number
of edges. As mentioned earlier, the graph attack prefers the
attack nodes with lower degrees. As a result, our graph-guided
attack nodes have lower node degrees compared to VanillaOpt
(Fig. 7(a) and Fig. 7(c)). This leads to significantly fewer edge
modifications in graph-guided attacks compared to VanillaOpt
(Fig. 7(b) and Fig. 7(d)), which enhances the unnoticeability
of the attack. In particular, both of our graph-guided attacks
only lead to less than 0.5% edge modification in the graph
space in both datasets.

E. Transferability of Graph-Guided Attack

We transfer our feature-space attacks to several unsuper-
vised anomaly detection models, including Beta-VAE [51],
IForest [52], and ECOD [53]. Tab. VI shows the anomaly
scores of target nodes before and after the transfer attack based
on our G-guided-alterI and G-guided-plus feature attack on
the KDD-99 dataset. The results indicate that the graph-guided
attack with graph attack loss significantly decreases the
anomaly scores of the target nodes across different models.
This suggests that the graph-guided attack on RWAD has the
potential to be used as a surrogate model for black-box attacks.
The graph-guided attack could be a useful tool for attackers
to evade detection and deceive anomaly detection systems in
real-world scenarios.

TABLE VI
TRANSFERABILITY: THE CHANGE IN ANOMALY SCORE (%) COMPARED

TO THE CLEAN DATA. LOWER IS BETTER

TABLE VII
PROXGRAPHRW MODEL DETECTION PERFORMANCE WITH VARIOUS

FEATURE SIMILARITY THRESHOLD ϵ (CORRELATION SIMILARITY)

IX. LIMITATION AND FUTURE WORK

Although our paper introduces coupled-space attacks for
RWAD and demonstrates the superior performance of our
proposed methods compared to the baselines, we did identify
certain limitations. Specifically, in Fig. 6, we observed that our
feature-space attacks were not as effective as our graph-space
attacks. Additionally, the unnoticeability of feature attacks was
found to be comparatively weaker than graph attacks. Fig. 7
indicates that the feature space attack resulted in a higher
proportion of graph structure perturbation.

These limitations highlight areas for further investigation
and improvement in future research. While our proposed
coupled-space attacks offer significant advancements, address-
ing these limitations could potentially enhance the effective-
ness and stealthiness of feature-space attacks in RWAD.

Generalization of coupled-space attack: In this study,
we introduce coupled-space attacks against RWAD, where the
interdependency between the graph space and the feature space
is exploited to enhance the effectiveness of attacks. Besides
RWAD, there are many other feature-derived graph models
where the graph and feature are interdependent [54], [55].
For example, graph structure can be constructed based on
traffic sensor data [56], earthquake sensor data [56], image
data [57], video data [58], and genomics data [59]. Future
work can generalize our proposed strategies to more feature-
derived graph-based models in which the graph is constructed
on raw features. Because the model directly relies on the
graph, as long as the graph constructed on the perturbed
feature is close to the perturbed graph, the attack is expected
to be effective.

In this paper, we show the potential of transferring our
graph-guided feature-space attacks on RWAD to three unsuper-
vised anomaly detection models. Future research can extend
this work to apply RWAD for black-box attacks on other deep
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learning-based anomaly detection systems, without relying on
labeled data or inner models.

X. CONCLUSION

In conclusion, this paper has shed light on the vulnera-
bilities of Random-Walk-based Anomaly Detection (RWAD),
a classical and important anomaly detection tool. Specifically,
we introduce a novel study of adversarial poisoning attacks
on RWAD, where the graph is constructed on top of the
feature space. We provide a theoretical understanding of
these attacks, including proof of NP-hardness. Our approach
involves proposing graph-space attacks and using the graph
attack to guide the feature-space attack, which bridges the gap
between these two attacks. Our experiments on four datasets,
encompassing both directly and indirectly accessible graphs,
demonstrate the effectiveness of our proposed graph-space
attack and its ability to guide the selection of attack nodes
and optimization of the attack loss for feature-space attacks.
By taking RWAD as an example, our study provides valuable
insights into the effectiveness of graph-space attacks and
feature-space attacks.

APPENDIX

We present more experimental results in this appendix.
We evaluate the impact of the feature similarity threshold
ϵ (hyper-parameter) ranging from 0.5 − 0.9 in Table VII.
In our experiment, we set the ϵ with the best detection
performance.
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