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Dowdéd formalny

Dowéd formalny osadu I - ¢ w naturalnej dedukgji,
to drzewo skonczone, w ktérym kazdemu wierzchotkowi
przypisano pewien osad. Przy tym:

> Korzeniowi drzewa przypisano osad I - .

» Osad przypisany dowolnemu wierzchotkowi powstaje
z osadéw przypisanych jego dzieciom poprzez
zastosowanie jednej z regut wnioskowania.

> Lisciom przypisano osady postaci A, a b .

Dowdéd osadu b ¢ nazywamy dowodem formuty .

Reguty dla koniunkgji

TFA THB
— (WA)
THAAB
THAAB THAAB
— (EN) ——— (EN)
r-A r-B8
Reguty dla prawdy, fatszu i negacji
M1
—— (WT) (EL)
reT r-A
MAFL rF-A TFA
(E-)
M- -A M1
M-AF L
(E=)

W poprzednim odcinku: naturalna dedukcja

» Reguty wprowadzania spéjnikéw logicznych: jak mozna
udowodni¢ formute danej postaci?

» Reguty eliminacji spojnikow: jak mozna wykorzysta¢
formute tej postaci do udowodnienia innej?

Reguty wnioskowania: aksjomat i implikacja

Moty (Ax)
A +FB I’FA THFA—-B
rrase (V) —trs &
Reguty dla alternatywy
A =B
— (W) — (W)
r'FAvVB r'FAVB
r-AvB T,AFC T[,BFC
Ev)

r=c

Poprawnos¢ i petnos¢ (dla rachunku zdan)

Twierdzenie (o petnosci)

» System naturalnej dedukcji jest poprawny: Jesli formuta
ma dowdd (jest twierdzeniem) to jest tautologia.

» System naturalnej dedukcji jest petny: Kazda tautologia
ma dowdd.



Poprawnosé

Twierdzenie: Jesli osad I = o ma dowad, to T = .

Dowdd: Dowéd jest przez indukcje ze wzgledu
na wielkos¢. . . dowodu I F a.

Rozwazamy kilka przypadkéw,
zaleznie od ostatniej uzytej reguty.

| o tym juz byta mowa w grudniu.

Uzyjmy dla odmiany metody algebraicznej

Najpierw takie ¢wiczenie. Znaczeniem formut, zamiast zer
i jedynek, niech bed3 na przyktad podzbiory ptaszczyny.

Interpretacja @ jest taka, ze w(p) C R? dla kazdego symbolu

zdaniowego p.
» [Llo =2 oraz [T]o =R%
> [pl= = @(p), gdy p jest symbolem zdaniowym;
> [-o]. = —[o]. (dopetienie);
> [oVflz = [dl= U8l
> [a A Ble = [oe N [Al=:
> [o = fle = —[od= VU Bl=

Cwiczenie

Formufta o jest tautologia klasycznego rachunku zdar wtedy
i tylko wtedy, gdy [¢]. = R? przy kazdej interpretacji = na
plaszczyznie.

Szkic dowodu (<) Jesli o jest interpretacja zerojedynkowa,
to wezmy w(p) = R? gdy o(p) = 1

oraz w(p) = @, gdy o(p) = 0.

tatwo sprawdzi¢, ze dla dowolnej formuty ) zachodza
réwnowaznosci:

ﬂw]lw =R & I[w]]g =1 i I[d’]lw =90 < I[w]]g =0

A wiec [¢], = 1.

Jak to mozna uogolni¢?

Obserwacja 1: W naszym ¢wiczeniu uzyliSmy rodziny
zbioréw P(IR?). Tak samo bedzie dla kazdej rodziny P(X),
i nie tylko. Wystarczy jakiekolwiek ciafo zbioréw.

Ciato zbioréw to taka rodzina zbiorow R C P(X), ze:

> g XeR,;
> jesli A B € R, to takze ANB,AUB € R,
> jesli A€ R, to takze —A € R.

(Dowéd taki sam.)

Ale jak udowodni¢ petnosc?

Mozna uzyé lematu Kalmara. Zaleta: dowdd jest prosty.
Wada: dziata tylko dla klasycznego rachunku zdan.

No i o tym tez juz byta mowa w grudniu.

Znaczenie implikacji

[¢ = ¥]w = —[¢l= U [¥]=

Cwiczenie

Formufa ¢ jest tautologia klasycznego rachunku zdan wtedy
i tylko wtedy, gdy [¢]. = R? przy kazdej interpretacji @ na
ptaszczyznie.

Szkic dowodu (=) Teraz wezmy jakas interpretacje @
na pfaszczyznie i dowolny punkt A € R?. Rozpatrzmy
interpretacje zerojedynkowa o:

o(p) = 1 wtedy i tylko wtedy, gdy A € @(p).

Przez tatwa indukcje udowodnimy, ze

[el, = 1 wtedy i tylko wtedy, gdy A € [¢]-.

Ale ¢ jest tautologia i A jest dowolny, wiec [¢]. = R2.

Obserwacja 2: To w ogdle nie musza by¢ zbiory. Mozna
wzigé dowolna algebre Boole'a.

Algebra Boole'a to uporzadkowany zbiér (B, <) z elementem
najmniejszym O i najwiekszym 1, w ktérym sa okreslone dwa
dziatania dwuargumentowe U i N i jedno jednoargumentowe
dziatanie —, w ten sposéb, ze dla kazdych a, b, c € B:

» an b jest kresem dolnym podzbioru {a, b};

> aU b jest kresem gérnym podzbioru {a, b};

» aU—a=1lian—-a=0;

> an(bUc)<(anb)U(anc).

Oczywiscie kazde ciato zbioréw jest algebra Boole'a.

Twierdzenie Stone'a o reprezentacji Kazda algebra
Boole’a jest izomorficzna z pewnym ciatem zbioréw.



Whiosek

Formufa jest jest tautologia klasycznego rachunku zdan
wtedy i tylko wtedy, gdy przyjmuje wartos¢ 1
przy dowolnej interpretacji w dowolnej algebrze Boole'a.

Ale czy ta relacja
[ <[fl. & Fa—p
to naprawde jest porzadek?

Zwrotno$¢: Zawsze - o — o — to fatwe:

aba
— (W)
Fa—a
Antysymetria: Jesli- o — forazt  — o, to - a « .

Ale v ¢+ (3 to tak naprawde koniunkcja (v — ) A (3 — «).

Fa—=f F—-a
Fa—=B)A (B —a)

tatwa, ale wazna uwaga
a~f & Faep

(Pamietamy, ze a <> /3 to tak naprawde koniunkcja
(= B)A(B— ))

Fakt: Klasa 1 = [T]., to klasa wszystkich twierdzen.

Dowdd: Po pierwsze, jesli - a, to takze T I «, bo T mozna
wszedzie bezkarnie dopisaé. (To sie nazywa osfabianie.)
Stad = T — «. Analogicznie - o — T, bo - T.

Po drugie, jesli =T — a, to b «, bo = T.

Czy algebra formut jest algebrg Boole'a?

Porzadek jest: [a. <[Ble & Fa—=p
Operacje i state tatwo wskazac¢:

1=[T]., 0=[Ll]..

[al~ U8l = [aV Al

fal~ N8l = [ A Al

—[a]~ = [~a]~.

Ale czy spetnione s3 wszystkie zadane warunki?

Algebra formut

Czy relacja < w zbiorze F wszystkich formut
a<f & Fta—f
jest relacja porzadkujaca?

Nie, bo nie jest antysymetryczna. No to wezmy relacje
réwnowaznosci

a~fp & Faep
i uporzadkujmy klasy abstrakgji.
Zbiér L = F /.., uporzadkowany relacja
[.<[Bl. & Fa—p

nazywamy algebra Lindenbauma-Tarskiego.

[al. <[Pl & Fa—=p
Przechodnio$¢: Zatézmy - a — [ oraz b 5 — .

Niech I' = {a — 3,8 — ~}.

Nata—5 Maka

E—)
Makf—n rakg
MNaky
— (W)
MN-a—»y
ED TR
a =/ —=7) = (a—7~
(W =)

Fla=8)=(B—=7)—=(a—=7)

Jesli teraz v — B i 3 — «, to trzeba dwa razy uzy¢
reguty (E —) i dostaniemy - o — .

Algebra formut

Zbiér L = F /.., uporzadkowany relacja
[-<Pl~ & Fa—=p

nazywamy algebra Lindenbauma-Tarskiego.

Ale czy to jest algebra Boole'a?

Czy algebra formut jest algebrg Boole'a?

Czego potrzebujemy?
Alternatywa jest kresem gérnym a koniunkcja dolnym:

> Fa—aVy oraz FB—aV;
> jesliFa—yiFf—oytobaVviE =y
> FaAf —a oraz FaAf — f;
> jesliFy s aibFy—= B, toby = anp.

Negacja jest dopetnieniem:
> FaA-a— L oraz FaV-a.
Jeszcze dystrybutywnos¢:

> Ean(BVy) = (aAB)V(aAr).

(E—=)



Chyba najtrudniejsza czes¢

—(aV-a),at o

S(aV-a),ak aV-oa S(aV-a),at =(aV-a)

—(aV-a),at L
—(aV-a) k-«

“(aV-a) bk aV-a (a0 V-a) F (e Vo)

—(aV-a)k L

FaV-a

Reszta fatwa.

Nieco silniejsza wersja twierdzenia o petnosci

Twierdzenie (tatwe) Dla dowolnej formuty ¢ i dowolnego
skoriczonego zbioru formut T zachodzi réwnowaznos¢:

M=o wtw, gdy )

Twierdzenie uogdlnione: Dla dowolnej formuty ¢
i dowolnego zbioru formut T zachodzi réwnowaznosé:

M=o wtw, gdy Mo
Ale co znaczy T - ¢, jesli T jest zbiorem nieskonczonym?

Ze Ty F ¢, dla pewnego skoficzonego podzbioru [y C T

o
o

Zwarto

Twierdzenie (o zwartosci): Jezeli I |= o, to istnieje taki
skoriczony podzbiér To C T, Ze [ |= .

Whiosek: Jezeli kazdy skoriczony podzbicr zbioru I
Jest spetnialny, to caty zbior I jest spetnialny.

Dowdd: Jesli T nie jest spetnialny, to I = L. Z twierdzenia
o zwartosci istnieje wiec skofnczony niespetnialny podzbiér.

Kolorowanie nieskonczonego grafu

Twierdzenie: Jesli relacja r jest tréjkolorowa w kazdym
skonczonym podzbiorze zbioru G, to jest trojkolorowa w G.

Dowdd: Zdefiniujemy pewien nieskonczony zbiér I' formut
rachunku zdan. Uzyjemy do tego (nieskonczenie wielu)
zmiennych zdaniowych postaci p/, dla a € G oraz i € {1,2,3}.
Intuicja: p! czytamy ,wierzchotek a ma kolor /"

W zbiorze I s3 takie formuty:

az = (p; V P3V p3) A =(py AP A=(ps Ap3) A =(p3AP3),
dla kazdego a € G. (Element a ma doktadnie jeden kolor.)

Bab = ~(p3 A py) A =(P3 A p3) A= (p3 A p}),
dla kazdej pary (a, b) € r. (Elementy a i b sg réznego koloru.)

Dowéd twierdzenia o petnosci

Zatézmy, ze ¢ jest tautologia klasycznego rachunku zdan.
Zatem ma wartos¢ 1 w kazdej algebrze Boole'a przy kazdym
wartosciowaniu.

No to wezmy algebre Lindenbauma L i wartosciowanie
@(p) = [p]~. Wtedy [a]» = [a] dla kazdej formuty o
(tatwa indukcja).

W szczegélnosci [¢]w = [¢]w-
A skoro to tautologia, to takze [¢], =1 =[T]..

Ale to wilasnie znaczy, ze -

Nieco silniejsza wersja twierdzenia o petnosci

Twierdzenie uogélnione: Dla dowolnej formuty
i dowolnego zbioru formut T zachodzi réwnowaznosé:

= wtw, gdy istnieje taki skoriczony
zbiorTo C T, zelTg b .

Twierdzenie (o zwartosci): Jezeli I |= ¢, to istnieje taki
skoriczony podzbior Iy C T, ze [y = .

Przyktad: kolorowanie nieskonczonego grafu

Niech G bedzie nieskonczonym zbiorem, w ktérym okreslono
symetryczng relacje r.

(Myslimy o G jak o zbiorze wierzchotkéw nieskoriczonego
grafu i o relagji r jak o zbiorze krawedzi tego grafu.)

Relacja r jest trojkolorowa, gdy istnieje taki podziat zbioru G
na trzy sktadowe, ze zadne dwa elementy zbioru G, nalezace
do jednej sktadowej, nie s3 w relacji r.

(Wierzchotki potaczone krawedziami sa réznych kolorow.)

Relacja r jest trojkolorowa w podzbiorze H C G, gdy
trojkolorowa jest relacja r N (H x H) w zbiorze H.

Kolorowanie nieskonczonego grafu

az = (p3 vV p3V p3) APy AP3) APy A p3) A=(p3 A P3)

Bab = —(p3 A PE) A (P A pR) A =(P3 A PR)

Mh={a.|aeHU{Bs | (a,b) ernHxH}, dlaHCG.
M=re.

Zbiér I}y jest spetnialny wtw, gdy relacja r jest tréjkolorowa

w podzbiorze H. A tak jest dla wszystkich skonczonych H.

Niech " C T bedzie skonczony. Wtedy I'" C I'; dla pewnego
skorczonego H C G. Zatem [ jest spetnialny.

Z twierdzenia o zwartosci caty zbiér I jest spetnialny, czyli
relacja r jest tréjkolorowa.



Woprowadzanie V

Wezmy dowolne y. (Cel: A(y))

Zatem A(y).

Naturalna dedukcja pierwszego rzedu Zatem ¥ ACY).

= A(y)

m y ¢ FV(T)

Eliminacja V Wprowadzanie 3

Vx A(x) A(t)
Poniewaz Vx A(x), wiec A(t). Poniewaz A(t), wiec 3x A(x)
gdzie t jest dowolnym termem (takze zmienng). gdzie t jest dowolnym termem.

I Vx A(x) I A(t)
[ At) M+ 3xAx)
Eliminacja Przyktad: Vx(P(x) = C), 3y P(y)F C
FxA(x) Zatézmy, ze Vx(P(x) — C) oraz Jy P(y) (Cel 1: C)
: Niech y bedzie takie, ze P(y). (Cel 2: C)
Poniewaz Vx(P(x) — C), wiec P(y) — C.
Niech y bedzie takie, ze A(y) (Cel: B) Poniewaz P(y) oraz P(y) — C, wiec C.
: Poniewaz Jy P(y), wiec C
Zatem B.
Poniewaz Jx A(x), wiec B. Oznaczenie: [ = {Vx(P(x) — C),3y P(y)}
I, P(y) - ¥x(P(x) = C)
[ 3xAK) TAQ) - B N N NPY)FPy)—C I P(y)F P(y)
5 (y ¢ V(N UEV(B)) 3y P(y) I Py C
r=c

Twierdzenie o petnosci

Przyktad: IxVy P(x,y) — Yy3x P(x,y)

(Cel: Yy3x P(x,y))
Twierdzenie: Dla dowolnej formuty ¢ i dowolnego

Zatézmy IxVy P(x,y)
(Cel: Ix P(x,¥))
zbioru formut T zachodzi réwnowaznosé:

Wezmy dowolne y.

Niech X bedzie takie, ze Vy P(X,y). (Cel: 3x P(x,y)) '

Poniewaz Vy P(X, y), wigc P(X,¥). le=op wtedy i tylko wtedy, gdy (")
Poniewaz P(xX,¥), wiec Ix P(x,).

Poniewaz 3xVy P(x, y), wiec Ix P(x,¥).
Zatem Vy3x P(x, y).
Zatem 3xVy P(x,y) — Vy3x P(x, y).

Twierdzenie (o zwartosci): Jezeli I |= o, to istnieje
taki skonczony podzbicr o C T, ze Ty = .

Cwiczenie: Napisa¢ dowéd formalny.



Zwartosc logiki pierwszego rzedu

Twierdzenie (o zwartosci): Jezeli I |= ¢, to istnieje
taki skoniczony podzbior o C T, ze [y = .

Whiosek: Jezeli kazdy skoriczony podzbicr zbioru I
Jest spetnialny, to caty zbior I jest spetnialny.

Dowdd: Jesli T nie jest spetnialny, to I = L. Z twierdzenia
o zwartosci istnieje wiec skonczony niespetnialny podzbiér.

Zastosowanie twierdzenia o zwartosci

Fakt: Nie istnieje formuta ¢ spetnialna doktadnie w tych
modelach, gdzie interpretacja symbolu relacyjnego r jest
relacja dobrego porzadku.

Dowdd: Zatézmy, ze takie ¢ istnieje. Zdefiniujmy formuty

ap = r(x,xi) A-r(x,x) A
r(xs, x2) A =r(xe, x3) A

r(Xn, Xp—1) A =r(Xa—1, Xn)

(Sens: wartosci x1, X, . . ., x, tworza skoficzony ciag malejacy.)

Zbior I = {a, | n > 1} U {p} jest niespetnialny.
Ale kazdy jego skonczony podzbiér Iy jest spetnialny,
na przyktad w (N, <). Sprzecznosé.



