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8 Dobre ufundowanie

Zbior czesciowo uporzadkowany (A, <) nazwiemy dobrze ufundowanym, gdy nie istnieje w
A nieskonczony zstepujacy ciag elementow, tzn. gdy nie istnieje réznowarto$ciowa funkcja
f: N — A taka, ze dla wszystkich n € N, zachodzi f(n + 1) < f(n). Dobrze ufundowany
liniowy porzadek nazywamy dobrym porzaqdkiem.

Przypomnijmy, ze jesli < jest czeSciowym porzadkiem, to dla zaznaczenia, ze element a
jest $cisle mniejszy od b (tzn. a # b oraz a < b) bedziemy pisaé¢ a < b.

Nastepujace twierdzenie podaje pozyteczna charakteryzacje porzadkéw dobrze ufundo-
wanych.

Twierdzenie 8.1 CzeSciowy porzadek (A, <) jest dobrze ufundowany, wtw, gdy kazdy nie-
pusty podzbior zbioru A ma element minimalny.

Dowdéd: Niech (A, <,4) bedzie zbiorem dobrze ufundowanym i zalézmy, ze X C A jest
niepustym podzbiorem nie majacym elementu minimalnego. Zdefiniujemy ciag f : N — X
nastepujaco. Niech f(0) € X bedzie dowolnym elementem. Zalézmy, ze f zostala zdefi-
niowana dla liczb £ < n oraz, ze dla wszystkich £ < n mamy f(k') <a f(k). Wéwczas
f(n') wybieramy jako dowolny element zbioru X taki, ze f(n') <4 f(n). Istnienie takiego
elementu f(n') wynika stad, ze f(n) nie jest elementem minimalnym w X. Tak wiec zdefinio-
wali$émy nieskonczony zstepujacy ciag elementéw zbioru A. Otrzymana sprzeczno$é¢ dowodzi,
ze kazdy niepusty podzbiér zbioru A ma element minimalny.

Na odwrét, jesli f : N — A jest nieskoniczonym zstepujacym ciagiem elementéw A to
oczywiscie obraz f(IV) jest niepustym podzbiorem A nie majacym elementu minimalnego.
|

Bezposrednia konsekwencja powyzszego twierdzenia oraz zasady minimum (zob. Twier-
dzenie 3.5) jest nastepujacy wynik.

Twierdzenie 8.2 Zbidr liczb naturalnych ze zwyktym porzadkiem jest dobrym porzadkiem.
Przyklad 8.3

1. Dla dowolnego zbioru A, zbior wszystkich stéw nad A uporzadkowany porzadkiem
prefiksowym jest dobrze ufundowany. Istotnie, gdyby wy > w; > ... byl zstepujacym
ciagiem stow, to biorac pod uwage ich dlugosci dostalibySmy zstepujacy ciag liczb
naturalnych |wg| > |wy| > ..., co jest niemozliwe na mocy Twierdzenia 8.2.

2. Zbiér ({0,1}*, <) z porzadkiem leksykograficznym indukowanym przez porzadek 0 < 1
(zob. Przyklad 7.8) nie jest dobrze ufundowany bowiem ciag

T a1 I |

tworzy nieskonczony tancuch zstepujacy.
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3. Jesli F jest dowolna rodzina zbioréw skonczonych, to (F, C) jest dobrze ufundowanym
porzadkiem. Wynika to stad, ze dla zbioréw skoniczonych A, B, jesli A jest wlasciwym
podzbiorem B, to |A| < |B|. Zatem nieskoriczony zstepujacy ciag zbioréw w F pro-
wadzilby do nieskonczonego zstepujacego ciagu liczb naturalnych. Tak wiec, zbiér FTj
skonczonych drzew k-argumentowych z relacja zawierania jest dobrze ufundowany dla
kazdego k.

4. (FTy,C) (zob. Fakt 7.13) jest dobrze ufundowany. Stosuje sie tutaj rozumowanie
analogiczne do przedstawionego w poprzednim punkcie.

5. Dla kazdego zbioru etykiet X, zbiér FT(X) terméw nad ¥ (zob. Przyklad 7.17)
uporzadkowany relacja T (“by¢ podtermem”) jest dobrze ufundowany. Powdd jest
ten sam co w poprzednich dwoch punktach.

6. Oczywiscie kazdy skonczony porzadek jest dobrze ufundowany.

7. Zbiér (11, C) drzew l-argumentowych jest dobrze uporzadkowany. Wynika to stad,
ze jedynym drzewem nieskoriczonym w T jest {0}*. Jest to element najwiekszy w
T;. Tak wiec (11, C) mozna otrzymaé ze zbioru dobrze uporzadkowanego (F'T7,C)
przez dodanie elementu najwiekszego. Operacja dodawania elementu najwiekszego
oczywiscie nie psuje wlasnosci dobrego ufundowania.

8. Zbiér (T3, C) natomiast nie jest dobrze ufundowany. Wezmy nastepujacy ciag drzew
2-argumentowych

tn = {0"w | w e {0,1}*}u{0" | i <n}U{0'1|i<n}

Dla dowolnej liczby n, zbiér t,,1 jest wlasciwym podzbiorem ¢, (zauwazmy, ze 0"11 €
tn — tny1). Powyzszy ciag jest nieskoficzonym ciagiem zstepujacym. Przyklad ten bez
trudu mozna przenie$é na dowolne (T}, C) dla k > 2.

8.1 Indukcja noetherowska

W zbiorach dobrze ufundowanych obowiazuje zasada indukcji. Jest to naturalne uogdlnienie
zwyklej zasady indukcji dla liczb naturalnych.

Twierdzenie 8.4 (Zasada indukcji noetherowskiej)
Niech (A, <a) bedzie porzqdkiem dobrze ufundowanym i niech P C A bedzie zbiorem spetnia-
jacym nastepujacy warunek,

dla kazdego x € A, z faktu Ze wszystkie elementy y <4 x nalezq do P wynika, ze v € P

Wdéwczas P = A.
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Dowdéd:  Jesli A — P # (), to niech zy € A — P bedzie elementem minimalnym. Zatem
jesli y <4 xg, to y € P. 7 zalozen twierdzenia wynika, ze xq € P. Otrzymana sprzecznosé¢
dowodzi, ze A— P=0,czyli A=P. 1

Niech (A, <) bedzie porzadkiem dobrze ufundowanym. Wprowadzimy nastepujace ozna-
czenie. Dla dowolnego a € A, definiujemy

Oa) ={x € A |z <a}.

Kazdy zbiér postaci O(a) bedziemy nazywaé odcinkiem poczatkowym w zbiorze (A, <).
Powyzsza notacja zbioréw O(a) nie uwzglednia zaleznosci od czeSciowego porzadku (A, <
). Zwykle nie bedzie to prowadzilo do niejednoznacznosci. W watpliwych przypadkach
bedziemy uzywali indeksu dla podkreslenia zaleznosci.

Na zbiorach dobrze ufundowanych mozna indukcyjnie definiowaé¢ funkcje, podobnie jak
w przypadku zbioru liczb naturalnych.

Twierdzenie 8.5 (O definiowaniu funkcji przez indukcje noetherowska)

Niech (A, <) bedzie zbiorem dobrze ufundowanym. Dla dowolnych zbioréw B oraz C i dowol-
nej funkcji h : PF(A x C, B) x A x C — B istnieje doktadnie jedna funkcja f: Ax C — B
spetniajaca ponizszy warunek dla dowolnych x € A oraz c € C':

flz,c)=h(f N (O(x) x C x B),x,c). (37)

Dowéd: Pokazemy najpierw, ze dla kazdego = € A istnieje funkcja f, : (O(z)U{z})xC —
B taka, ze dla dowolnych y < x oraz c € C,

fo(y, ) = h(fz N (O(y) x C x B), z,¢). (38)

Powyzsza wlasno$¢ udowodnimy przez indukcje noetherowska ze wzgledu na x. Niech
y < z iniech f, : (O(y) U{y}) x C — B bedzie funkcja spelniajaca powyzszy warunek.
Wezmy dowolne y,ys < x. Twierdzimy, ze dla dowolnego z € A takiego, ze z < y1, z < y»
oraz dla dowolnego ¢ € C' mamy

fyl(yvc) = fy2(yac)'

Wynika to natychmiast z zalozenia indukcyjnego i z wzoru (38).
Zatem g = |J{f, | v < z} jest funkcja o dziedzinie O(z) x C. Tak wiec mozemy
zdefiniowaé funkcje f, nastepujaco

fo(y,¢) = gU{(z,h(g,y,¢))},

gdzie y < z oraz ¢ € C. Pozostawiamy czytelnikowi sprawdzenie,ze f, spehia (38). To
koriczy dowdéd (38).



8 DOBRE UFUNDOWANIE 74

7 udowodnionej powyzej wlasnosci natychmiast wynika, ze dla dowolnych z1,2, € A,
mamy

fwl(yac) = fwz(y’c)’

gdzie y < x1, y < x9 oraz c € C.
Zatem f = |J{fz | * € A} jest funkcja o dziedzinie A x C. Mamy

f(z,c) = fe(z,¢) = h(fo N (O(z) x C x B),z,¢) =h(f N(O(x) x C x B),z,c).

Powyzsza réwnosé¢ konczy dowéd twierdzenia. M

Zbiér C' w powyzszym twierdzeniu pelni role zbioru parametréw. Zauwazmy, ze definicja
indukcyjna funkcji w (37) polega na okreslaniu funkcji na elemencie x w zaleznosci od juz
zdefiniowanej czesci funkcji dla argumentow mniejszych od z. W szczegdlnosci jesli x jest
elementem minimalnym w A, to (37) redukuje sie do wzoru:

f(z,¢) =h(D,x,c)

Przyklad 8.6 Zilustrujemy zastosowanie twierdzenia 8.5 na przykladzie definicji funkcji
konkatenacji stow f : X* x X* — X*. Zalézmy, ze dla kazdego a € X mamy dana funkcje
go : X* — X*, ktéra kazdemu stowu w € X* przyporzadkowuje stowo aw. Funkcje g, mozna
nazwac¢ a-tym nastepnikiem.

Intuicyjnie, nastepujaca rodzina réwnan definiuje f,

fle,w)=w (39)
flau,w) = go(f(u,w)), dlaae X (40)

Mozna te definicje sformalizowaé stosujac twierdzenie 8.5. Niech A = B = (C = X* oraz
niech h : PF(X* x X*, X*) x X* x X* — X* bedzie funkcja zdefiniowana nastepujaco

| g.(f(u,w)) jedli u=au oraz (u',w) € Dom(f)
Al w) = { w w przeciwnym przypadku

Porzadek <, na zbiorze A definiujemy nastepujaco. Dla u,w € A, mamy w <, u wtedy i
tylko wtedy, gdy w jest przyrostkiem u, tzn., gdy istnieje w' € A takie, ze u = w'w. Porzadek
(A, <) jest dobrze ufundowany, gdyz jest on izomorficzny z porzadkiem prefiksowym na A
(izomorfizm ustala fukcja, ktéra kazdemu stowu w przyporzadkowuje stowo w¥, powstajace
z w przez odwrécenie kolejnoscei liter w w).

Latwo jest zauwazy¢, ze réwnania (39), (40) definiujace f sa réwnowazne réwnaniu (37)
z twierdzenia 8.5 przy h zdefiniowanym powyzej.

Wiecej przyktadéw definicji funkcji przez indukcje noetherowska poznamy w nastepnych
dziatach poswieconych logice.
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8.2 Dobre porzadki

Przypomnijmy, ze dobry porzadek to liniowy przadek dobrze ufundowany.

Fakt 8.7 Niech (A, <) bedzie zbiorem dobrze uporzqdkowanym. Dla dowolnych a,b € A,
jesli a # b, to odcinki poczatkowe O(a) © O(b) nie sq izomorficzne.

Dowdéd: Zalézmy, ze b < a oraz, ze f : O(a) — O(b) jest izomorfizmem. Niech a € A bedzie
najmniejszym elementem, dla ktérego istnieje ¢ < a taki, ze O(a) i (c) sa izomorficzne.
Poniewaz O(b) jest whasciwym podzbiorem zbioru O(a), to zbiér O(b)— f(O(b)) jest niepusty.

—

Niech ¢ bedzie najmniejszym elementem w tym zbiorze. Oczywiscie f(O(b)) C O(c). Z
to z € f(O®D)).

wyboru elementu ¢ wynika, ze dla dowolnego z < ¢, poniewaz x € O(b),
Zatem

flo®) = 0(c),

czyli odcinki poczatkowe O(b) i O(c) sa izomorficzne. Poniewaz ¢ < b < a, to otrzymujemy
sprzecznos¢ z wyborem elementu a. W

7 powyzszego faktu natychmiest otrzymujemy nastepujacy wniosek.

Whiosek 8.8 Zaden zbidr dobrze uporzadkowany nie jest izomorficzny ze swoim odcinkiem
poczatkowym.

Przedstawimy teraz konstrukcje, do ktorej bedziemy sie odwotywaé¢ w kilku natepnych
lematach oraz w czesci poswieconej liczbom porzadkowym. Niech (A, <,) oraz (B, <p) beda
zbiorami dobrze uporzadkowanymi. Niech x bedzie elementem nie nalezacym do zbioru B.
Niech B’ = BU{x}. Porzadek na B’ jest rozszerzeniem porzadku <p przez dotaczenie * jako
elemntu najwiekszego. Zdefiniujemy g : A — B’ przez indukcje noetherowska. Dla a € A,
niech g(a) bedzie najmniejszym elementem w zbiorze B — {g(z) | z <4 a}, o ile ten zbiér
jest niepusty. Jesli B — {g(z) | z <a a} = 0, to definiujemy g(a) = *. Funcje g nazwiemy
przeksztatceniem kanonicznym indukowanym przez (A, <a) i (B, <p).

Lemat 8.9 Niech (A, <,) i (B, <pg) beda zbiorami dobrze uporzadkowanymi i niech g : A —
B’ bedzie przeksztatceniem kanonicznym indukowanym przez te zbiory.

(i) Dla kazdego a € A, jesli g(a) # *, to §(O(a)) = O(g(a)).

(11) Jedli a € A jest najmniejszym elementem takim, ze g(a) = *, to §(O(a)) = B.
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Dowéd: Udowodnimy (i) przez indukcje noetherowska ze wzgledu na a. Zauwazmy, ze
poniewaz g(a) # *, to nie ma znaczenia czy odcinek poczatkowy wyznaczony przez g(a) jest
brany wzgledem zbioru B czy B'. Z zalozenia o funkcji g wynika, ze

9(a) € {g(z) | x < a}. (41)

Wezmy dowolny ¢ € O(a). Gdyby g(a) <p g(c), to mielibySmy
g(a) € O(g(c)) = §(O(c)) € {g(2) |  <a a},

co przeczy (41). Z tych samych powodéw mamy g(c) # g(a). Zatem
§(O(a)) € O(g(a)).

Na odwrét, wezmy b <p g(a) dla pewnego b € B. Poniewaz g(a) jest najmniejszym
elementem spelniajacym (41), to istnieje ¢ <4 a taki, ze b = g(c). Zatem b € g(O(a)), co
koniczy dowéd (i).

Dla dowodu (ii) zauwazmy, ze poniewaz g(a) = *, to B C {g(z) | z <4 a} = §(O(a))
Z drugiej strony, z zalozeri w punkcie (ii) wynika, ze dla kazdego ¢ <4 a, mamy g(c) € B
Zatem §(O(a)) C B. To koniczy dowdd lematu. B

7 powyzszego lematu otrzymujemy natychmiast nastepujacy wniosek, ktérego dowdd
pozostawiamy czytelnikowi.

Whniosek 8.10 Niech (A, <4) i (B,<g) beda zbiorami dobrze uporzadkowanymi i niech
g : A — B' bedzie przeksztatceniem kanonicznym indukowanym przez te zbiory.

(i) g jest monotoniczna.
(i1) Jedli x & g(A), to g jest réznowartosciowa.

(i1i) Jesli x € G(A) oraz a € A jest najmniejszym elementem takim, ze g(a) = *, to
(B, <p) jest izomorficzny z odcinkiem poczatkowym O(a).

Nastepny fakt pokazuje, ze przeksztalcenie kanoniczne jest najmniejszym sposréd wszy-
stkich funkcji monotonicznych pomiedzy dwoma ustalonymi dobrymi porzadkami.

Lemat 8.11 Niech (A, <) i (B,<p) beda zbiorami dobrze uporzadkowanymi i niech g :
A — B’ bedzie przeksztatceniem kanonicznym indukowanym przez te zbiory. Dla dowolnej
funkcji monotonicznej i réznowartosciowej f : A — B i dla dowolnego a € A mamy

9(a) <p f(a).

W szczegdlnosci wynika stad, Ze jesli istnieje monotoniczna i roznowartosciowa funkcja z
(A, <a) w(B,<p) tox & §(A) oraz g : A — B jest roznowartosciowa.
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Dowéd: Najpierw udwodnimy powyzsza nieréwnos¢ przez indukcje noetherowska ze wzgledu
na a, przy dodatkowym zalozeniu, ze g(a) # *. Weimy dowolny a taki, ze g(a) # * i
przypusémy, ze f(a) <p g(a). Poniewaz g(a) & {g(z) | * <4 a}, to z definicji funkcji g wy-
nika, ze istnieje x <4 a taki,ze f(a) = g(x). Z zalozenia indukcyjnego mamy g(z) <p f(x).
Zatem f(a) <p f(z), co przeczy zalozeniu o monotonicznosci i réznowartosciowosci f. Otrzy-
mana sprzeczno$¢ dowodzi nieréwnosci f(a) <p g(a).

Przypusémy teraz, ze g(a) = * i niech a € A bedzie najmniejszym elementem o tej
whasnosci. Z Faktu 8.9 (ii) wynika, ze B = {g(z) | * <4 a}. Zatem istnieje z <4 a taki,ze
f(a) = g(z). Z powyzszej czesci dowodu wiemy, ze g(z) <p f(x). Zatem f(a) <p f(z) i
podobnie jak wyzej, otrzymujemy sprzeczos¢. Zatem musi byé g(a) # *.

Druga czes¢ Lematu 8.11 wynika z pierwszej oraz z Wniosku 8.10 (ii). W

Lemat 8.12 Niech (A,<,) i (B,<p) beda zbiorami dobrze uporzadkowanymi i niech g :
A — B oraz h : B — A’ beda przeksztatceniami kanonicznymi indukowanymi przez te
zbiory. Wiedy dla kazdego a € A takiego, ze g(a) # *, zachodzi hg(a) = a.

Dowéd: Dowodzimy lemat przez indukcje noetherowska ze wzgledu na a € A, spelniajace
warunek g(a) # *. Wezmy dowolne takie a i rozwazmy zbiér X = {h(y) | y <z g(a)}.
Pokazemy, ze

X = O(a). (42)

Niech z = h(y) dla pewnego y <p g(a). Z definicji funkcji g wynika, ze istnieje z <4 a taki,
ze y = g(z). Zatem, stosujac zatozenie indukcyjne otrzymujemy

h(y) = hg(z) = z.

Wynika stad, ze x <4 a.

Na odwrét, wezmy = <4 a, wtedy na mocy Lematu 8.9 mamy g(z) <p g(a) oraz z
zalozenia indukcyjnego x = hg(x). Zatem z € X. To koniczy dowéd (42).

Tak wiec A — X # (0 i hg(a) jest najmniejszym elementem w tym zbiorze. Jest to
oczywiscie element a, na mocy (42). W

8.3 Liczby porzadkowe

Przypomnijmy, ze liczby kardynalne sa obiektami przyporzadkowanymi zbiorom w ten sposéb,
ze dwa zbiory maja przyporzadkowany ten sam obiekt wtedy i tylko wtedy, gdy zbiory
te sa réwnoliczne. Zatem liczby kardynalne reprezentuja w pewnym sensie klasy zbioréw
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rownolicznych. Analogiczna role w stosunku do dobrych porzadkéw spelniaja liczby porza-
dkowe — reprezentuja one klasy dobrych porzadkéw izomorficznych. Tak wiec, liczbams
porzadkowymi sa obiekty przyporzadkowane kazdemu dobremu porzadkowi w ten sposéb, ze
dwém porzadkom jest przyporzadkowany ten sam obiekt wtedy i tylko wtedy, gdy te porzadki
sa izomorficzne. Jesli a jest liczba porzadkowa odpowiadajaca dobremu porzadkowi (A, <),
to méwimy tez, ze (A, <) jest uporzadkowany w typ «. Bedziemy to oznaczaé (A, <4) = a.

Liczba porzadkowa odpowiadajaca dobremu porzadkowi (n, <) jest liczba n. Natomiast
porzadkowi (N, <) odpowiada liczba porzadkowa oznaczana w (omega).

Liczby porzadkowe mozna dodawac. Jesli a jest liczba porzadkowa zwiazana z dobrym
porzadkiem (A, <4) aliczba [ jest zwiazana z (B, <p), to liczba a+f jest z definicji zwiazana
z porzadkiem, ktory jest takim rozszerzeniem porzadkéw <4 oraz <p, ze wszystkie elementy
A sa mniejsze od wszystkich elementéw B (zakladamy, bez zmniejszenia ogélnosci, ze A i
B sa roztaczne). Pozostawimy czytelnikowi dowdd, ze tak okreslony porzadek jest dobrym
porzadkiem. Zauwazmy, ze 1 +w = w oraz, ze w+ 1 # w, bowiem w+ 1 reprezentuje porzadek
z elementem najwiekszym, a w reprezentuje porzadek bez elementu najwiekszego, a ponadto
izomorfizm przeprowadza element najwiekszy na element najwiekszy. Zatem dodawanie liczb
porzadkowych nie jest operacja przemienna. Dla skonczonych liczb porzadkowych pokrywa
sie ono ze zwyklym dodawaniem liczb naturalnych.

Przykladowo, liczba w—+1 jest przyporzadkowana dobremu porzadkowi drzew 1-argumento-
wych (T3, C).

Liczby porzadkowe mozna poréwnywaé. Jesli (A, <,) = a oraz (B, <p) = 3, to méwimy,
ze « jest mniejsza lub réwna § (piszemy a < (), wtw, gdy istnieje monotoniczna i rézno-
wartosciowa funkcja f : A — B. Definiujemy a < 3, gdy a <  oraz (A, <4) i (B, <g) nie
sg izomorficzne.

Ponizej zajmiemy sie pewnymi podstawowymi wlasnosciami tak zdefiniowanego zwiazku.'?

Fakt 8.13 Dla dowolnych zbioréw dobrze uporzadkowanych (A, <a) oraz (B,<p), mamy
(A, <a) < (B, <p) wtedy i tylko wtedy, gdy (A, <a) jest izomorficzny z pewnym odcinkiem
poczatkowym w (B, <p).

Dowdéd: (=) Niech g : A — B’ bedzie przeksztalceniem kanonicznym indukowanym przez
(A, <a) i (B,<p). Z Wniosku 8.10 wynika, ze g jest ré6znowartosciowa oraz g : A — B.
Z zalozenia wynika, ze g nie moze by¢ na B. Niech b € B — §(A) bedzie najmniejszym
elementem. Pokazemy, ze

g(A) = 0() (43)

Niech a € A bedzie dowolnym elementem. Gdyby b <p g(a) to z Lematu 8.9 istnialoby
x <4 a takie, ze b = g(x), wbrew wyborowi b. Zatem g(a) <gp b, czyli g(a) € O(b). Na
odwrdt, jesli ¢ <p b, to z wyboru b wynika,ze ¢ € §(A). To dowodzi (43).

128cigle méwiac poréwnywanie liczb porzadkowych nie jest relacja bo nie istnieje zbiér wszystkich liczb
porzadkowych.
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Z (43) wynika, ze (A, <4) jest izomorficzny z O(b).

Implikacja (<) jest oczywista — gdyby (A, <) i (B, <p) byly izomorficzne, to (B, <p)
bytby izomorficzny ze swoim odcinkiem poczatkowym, co jest niemozliwe na mocy Wnio-
sku 8.8. N

Twierdzenie 8.14 (Cantor)
Dla dowolnych zbioréw dobrze uporzadkowanych (A, <a) i (B, <p), jesli (A, <) < (B, <p)
oraz (B, <p) < (A4,<4), to (A, <4) i (B,<p) sa izomorficzne.

Dowdd: Wezmy kanoniczne przeksztalcenia g : A — B’ oraz h : B — A’, indukowane przez
(A,<a) i (B,<pg). Z Lematu 8.11 wynika, ze * ¢ G(A) oraz x ¢ h(B). Zatem, na mocy
Lematu 8.12, funkcje g: A — Bi h: B — A sa izomorfizmami. B

Twierdzenie 8.15 (O trichotomii)
Dla dowolnych liczb porzadkowych o, B zachodzi doktadnie jedna z nastepujacych mozliwosci:

(i) a<pB;
(i) B < «;
(iii) o = B.

Dowdéd: Oczywiscie zadne dwa z powyzszych warunkéw nie moga zaj$¢ jednoczesnie.
Dla dowodu, ze zawsze musi zaj$¢ ktorys z tych warunkéw wezmy dowolne zbiory dobrze
uprzadkowane (A, <,) oraz (B, <p) takie, ze (A, <,) = « oraz (B,<p) = . Rozwazmy
przeksztalcenia kanoniczne g : A — B’ oraz h : B — A’, indukowane przez te zbiory.

Na mocy Wniosku 8.10, jesli x € g(A) to a < 3, a zatem zachodzi (i) lub (iii). Podobnie,
jesli « & h(B), to 8 < a i zachodzi (ii) lub (iii). Jedli ¥ € F(A), to na mocy Wniosku 8.10
zachodzi (ii). Wreszcie, jesli x € h(B), to zachodzi (i). W

Twierdzenie 8.16 Kazdy zbior liczb porzadkowych jest dobrze uporzqedkowany przez <.

Dowdd: Wezmy dowolny zbiér Z liczb porzadkowych. Z Twierdzen 8.14 oraz 8.15 wynika,
ze Z jest liniowo uporzadkowany.
Przypuéémy, ze mamy nieskorniczony zstepujacy lancuch w 7

a1 >0 > ...
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Niech (4;,<a,) = «; dla ¢ > 0. Pokazemy, ze dla kazdego i > 0, istnieje a; € Ay taki, ze
odcinek poczatkowy O(a;) jest izomorficzny z A; oraz a;11 <a, a;.

Powyzsza wlasnos¢ dowodzimy przez indukcje ze wzgledu na i. Poniewaz o < o, to na
mocy Faktu 8.13, istnieje a; € A taki, ze (A1, <a,) jest izomorficzny z O(ay).

Wezmy dowolne ¢ > 1. Stosujac podobne rozumowanie znajdujemy ¢ € A; ; taki, ze
(A, <a4,) jest izomorficzny z O(c). Z zalozenia indukcyjnego (A; 1, <y, ,) jest izomorficzny
z O(a;_1) C Ag. Niech a; € O(a;_ 1) bedzie elementem, na ktdéry przechodzi ¢ przy tym izo-
morfizmie. Poniewaz przy izomorfizmie odcinek poczatkowy jest przeksztalcany na odcinek
poczatkowy, to odcinki O(c) i O(a;) sa izomorficzne. Zatem (A;, <4,) jest izomorficzny z
O(CI/Z)

Tak wiec zdefiniowali$my nieskoniczony zstepujacy ciag w (Ag, <4,). Otrzymana sprzecz-
nos¢ dowodzi, ze Z jest dobrze uporzadkowany. W

8.4 Twierdzenie Zermelo i dowdd lematu Kuratowskiego-Zorna

Na zakonczenie informacji o dobrym ufundowaniu przytoczymy twierdzenie majace charakter
rownie niekonstruktywny jak lemat Kuratowskiego-Zorna.

Twierdzenie 8.17 (Zermelo)
Kazdy zbior mozna dobrze uporzadkowad, tzn. dla kazdego zbioru A istnieje relacja dobrego
porzqdku na A.

Dowdéd: Niech R bedzie zbiorem wszystkich par (X,r) takich, ze X C A oraz r jest
dobrym porzadkiem w X. Niech Z bedzie zbiorem wszystkich liczb porzadkowych « takich,
ze istnieje (X,r) € R, uporzadkowany w typ «. Na mocy Twierdzenia 8.16 zbiér Z jest
dobrze uporzadkowany relacja <.

Zdefiniujemy funkcje f : Z — A przez indukcje noetherowska. Niech ay € A bedzie
dowolnym ustalonym elementem.'® Dla a € Z, jako f(a) wybieramy dowolny element ze
zbioru A — {f(8) | B < a}, o ile zbiér ten jest niepusty. Jesli {f(B) | 8 < a} = A, to
kladziemy f(«) = ao.

Pokazemy, ze .

f(Z2) = A. (44)

—

Przypusémy, ze X = f(Z) # A. Wowczas, jak latwo wynika z definicji f, funkcja f jest
roznowartosciowa, a zatem w zbiorze X mozna okresli¢ dobry porzadek r, indukowany przez
porzadek w Z. Porzadek ten jest oczywiscie izomorficzny z (Z,<). Niech v = (Z,<).
Poniewaz (X,r) € R, to ¥ € Z i, co za tym idzie, O(y) C Z. Zatem Z bylby izomorficzny
ze swoim odcinkiem poczatkowym. Otrzymana sprzeczno$é dowodzi (44).

13Bez zmniejszenia ogdlnosci mozemy przyjaé, ze A # ().
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Jesli istnieje o € Z taka, ze {f(8) | 8 < a} = A, to niech « bedzie najmniejsza o tej
whasnosci. Wowezas f, ograniczona do O(a), jest réznowartoéciowa i poniewaz f(O(a)) = A,
to indukuje ona dobry porzadek na A. Jesli dla kazdego o € Z mamy {f(5) | 5 < a} # A,
to f jest réznowartosciowa i z (44) wynika, ze réwniez w tym przypadku, f indukuje dobry
porzadek na A. N

Jako bezposredni wniosek z Twierdzenia 8.15 oraz Twierdzenia 8.17 otrzymujemy naste-
pujacy wniosek.

Whiosek 8.18 Dla dowolnych zbioréw A, B zachodzi |A| < |B| lub |B| < |A].

Dowéd: Zbiory A i B mozna dobrze uporzadkowaé¢. Niech a i S beda typami porzadkowymi
tych zbioréw. Na mocy Twierdzenia 8.15 mamy, ze « < [ lub f < a. W pierwszym
przypadku zachodzi |A| < |B|, a w drugim |B| < |[A]. &

Skorzystamy teraz z twierdzenia Zermelo do udowodnienia Lematu Kuratowskiego-Zorna
(por. Twierdzenie 7.30).

Dowdd lematu Kuratowskiego-Zorna:

Niech (A, <,) bedzie cze$ciowym porzadkiem, w ktérym kazdy taricuch ma ograniczenie
gérne. Pokazemy, ze A zawiera element maksymalny.

Niech Z bedzie dowolnym zbiorem o mocy wiekszej niz A i niech < bedzie dobrym
porzadkiem w Z — taki porzadek istnieje na mocy twierdzenia Zermelo. Zdefiniujemy funkcje
monotoniczng f : Z — A przez indukcje noetherowska,.

Niech z € Z i rozwazmy zbiér X = {f(u) | u < z}. 7Z zalozenia indukcyjnego wynika,
ze X jest lancuchem, a zatem ma ograniczenie gérne. Jesli X ma jakies ograniczenie gérne
a nalezace do zbioru A — X, to definiujemy f(z) = a, gdzie a jest dowolnie wybranym
elementem o tej wlasnosci. W przeciwnym przypadku X zawiera swoje wlasne ograniczenie
gérne a, ktére musi by¢ zarazem elementem najwiekszym w X. Wéwczas kladziemy f(z) = a.

Poniewaz |Z| > |A|, to funkcja f nie moze by¢ réznowartosciowa. Zatem istnieje zp € Z
taki, ze dla wszystkich z, jesli zg < z, to f(20) = f(2). Z definicji funkcji f wynika, ze f(zo)
jest elementem maksymalnym w (A, <4). To koniczy dowéd lematu Kuratowskiego-Zorna.

|

Zaréwno lemat Kuratowskiego-Zorna jak i twierdzenie Zermelo wymagaja dla dowodu
nowego aksjomatu. Aksjomat ten, zwany pewnikiem wyboru orzeka, ze dla kazdej niepustej
rodziny zbioréw niepustych istnieje funkcja wyboru, tzn. funkcja, ktéra kazdemu zbiorowi
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tej rodziny przyporzadkowuje pewien element tego zbioru. Mozna pokazac¢, ze pewnik wy-
boru, twierdzenie Zermelo oraz lemat Kuratowskiego-Zorna sa sobie r6wnowazne na gruncie
pozostalych aksjomatéw teorii mnogosci.

Zauwazmy, ze obydwa twierdzenia maja niekonstruktywny dowéd, tzn. dowodzi sie w
nich istnienie obiektu (dobrego przadku w przypadku twierdzenia Zermelo oraz elementu
maksymalnego w przypadku lematu Kuratowskiego-Zorna), ktérego konstrukcji dowdd nie
podaje.

Zadania

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

Dowiesé, ze jesli f : A — B jest monotoniczna bijekcja pomiedzy dobrymi porzadkami
(A, <) oraz (B, <g), to funkcja odwrotna f~! jest tez monotoniczna. Czy zalozenie,
ze mamy do czynienia z dobrymi porzadkami jest istotne?

Niech (A, <4) bedzie zupelnym porzadkiem i niech f : A — A bedzie funkcja mono-
toniczna. Dowiesé, ze f ma najmniejszy punkt staly. (Wskazdwka: wziaé¢ dostatecznie
duza liczbe porzadkowa o i zdefiniowaé taicuch iteracji { f%(L) | 8 < a}, funkcji f na
elemencie najmniejszym | .)

Dowies¢, ze jesli (A, <,) oraz (B,<p) sa dobrze ufundowane oraz AN B = (, to
porzadek (AU B, <) zdefiniowany ponizej jest tez dobrze ufundowany:

z<aY, lub
x S Yy WtW, gdy x SB Y, lub
r€Aorazy € B

Dowiesé, ze jesli (A, <4) oraz (B, <g) sa dobrze ufundowane, to porzadek (A x B, <)
zdefiniowany ponizej jest tez dobrze ufundowany:

by <pg by lub
< 7
{a1,b1) < {az, by) wiw, gdy { by = by oraz a1 <4 as
Podzbiér X zbioru czesciowo uporzadkowanego (A, <) nazwiemy antytaricuchem, gdy
zadne dwa elementy zbioru X nie sa poréwnywalne w sensie relacji <j4.

Dowiesé, ze jesli (A, <,) oraz (B, <g) nie zawieraja nieskoniczonych antytaiicuchéw to
(A x B, <) tez nie zawiera nieskonczonych antylancuchéw, gdzie porzadek w produkcie
A x B jest zdefiniowany w poprzednim zadaniu.

Niech (A, <4) bedzie czeSciowym porzadkiem dobrze ufundowanym. Niech Pp,(A)
oznacza zbiér wszystkich skonczonych podzbioréw zbioru A. Definiujemy nastepujaca
relacje < w zbiorze Pj;,(A). Dla skoniczonych zbioréw X,Y C A, zachodzi X <Y
wtw, gdy istnieje a € Y oraz zbiér Z C A taki, ze
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8.7.

e dla kazdego z € Z, zachodzi z <4 a oraz
e X =(Y—-{a}h)UZ.

Dowies¢, ze nastepujaca relacja C w Py;,, (A) jest dobrze ufundowanym czesciowym po-
rzadkiem: X C Y zachodzi wtw, gdy X =Y lub istnieje n > 0 oraz ciag Xy, ... X,,—1
skonczonych podzbioréow zbioru A taki, ze X = X, Y = X,,_; oraz dla kazdego i < n,
zachodzi X; < X;41.

Czy teza zadania zachodzi jesli w definicji relacji < zastapimy <4 przez <47 Relacje
< oraz C mozna analogicznie zdefiniowa¢ w catym zbiorze P(A). Czy relacja C jest
wowczas czesciowym porzadkiem dobrze ufundowanym?

Dowies¢, ze jesli (A, <4) nie zawiera nieskoriczonych antylanicuchéw, to (Pjin(A), C)
tez nie zawiera nieskoniczonych antylancuchéw, gdzie C jest relacja zdefiniowana w
poprzednim zadaniu.



