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7 Czesciowe porzadki

Czesciowym porzadkiem w zbiorze A nazywamy pare (A, <), gdzie < C A x A jest relacja
dwuargumentowa spelniajaca nastepujace warunki.

e (Zwrotnosé) Dla kazdego a € A, zachodzi a < a.

o (Antysymetria) Dla dowolnych a,b € A, jesli a < b oraz b < a, to a = b.

e (Przechodnio$é) Dla dowolnych a,b,c € A, jeslia < borazb<e¢, toa <ec.
Jesli ponadto porzadek < spelnia warunek spdjnosci:

e (Spdjnosé) Dla dowolnych a,b € A, zachodzi a < b lub b < a.

to nazywamy go porzaqdkiem liniowym lub taricuchem.
Jesli (A, <) jest zbiorem czeSciowo uporzadkowanym, to napis a < b bedzie oznaczal
zdanie “a < boraz a #b".

Przyklad 7.1 Zbiér potegowy (P(A), C) jest zbiorem czesciowo uporzadkowanym relacja
inkluzji. Ten zbior jest tanicuchem wtw, gdy A ma co najwyzej jeden element.

Przyklad 7.2 Zbiér liczb naturalnych N ze zwykla relacja porzadku jest liniowo uporzadko-
wany (zob. Twierdzenie 3.3 (v)) Przypomnijmy, ze N byl wprowadzony jako najmniejszy
zbiér induktywny, a wiec jest rodzina zbioréw uporzadkowana relacja zawierania.

Powyzsze dwa przyklady sa szczegdlnym przypadkiem nastepujacej sytuacji.

Fakt 7.3 Kazda rodzina zbiorow z relacja zawierania jest czesciowym porzadkiem.

Dowdéd: Wynika natychmiast z wlasnosci relacji zawierania. W

Przyklad 7.4 Zbiér liczb naturalnych dodatnich jest czeSciowo uporzadkowany przez relacje
podzielnosci. Latwy dowdéd pozostawiamy czytelnikowi.
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7.1 Slowa

Podamy teraz kilka przykladéw czesciowych porzadkow zwiazanych ze stowami.

Przyktad 7.5 (Porzqdek prefiksowy.) Niech A bedzie dowolnym zbiorem. W zbiorze A*,
wszystkich skoficzonych stéw skoriczonych nad A, mamy okreslona operacje skladania (zob.
Przyklad 4.1 (iii)). Okreslimy relacje porzadku prefiksowego. Moéwimy, ze slowo w jest
prefiksem stowa u, oznaczamy to przez w < u, gdy istnieje w' € A* taki, ze

u=ww.

Fakt 7.6 Relacja < porzadku prefiksowego zdefiniowana wyzej jest czesciowym porzadkiem
w zbiorze wszystkich slow A*.

Dowdd: Oczywiscie kazde slowo jest swoim wlasnym prefiksem, a zatem < jest relacja
zwrotna. Jesli v = ww' oraz w = uu' to dostajemy

u = (uu')w'.
Poniewaz operacja sktadania stéw jest taczna,® tzn. w(uv) = (wu)v,to powyzsza réwnosé daje
u=u(u'w). A zatem u'w' = ¢, czyli v' = w' = ¢ i u = w. Tak wiec < jest antysymetryczna.
Przechodnio$¢ < wynika bezposrednio z tacznosci operacji sktadania. W

Przyklad 7.7 (Porzadek leksykograficzny.) Przypusémy, ze mamy zbiér A czeSciowo upo-
rzadkowany przez relacje <. Relacja ta indukuje na A* relacje < zwana porzqdkiem leksy-
kograficznym nad (A, <) zdefiniowana nastepujaco. Jesli w,u € A* to w =< u gdy w jest
prefiksem w lub gdy istnieje ¢ < min(Jw|, |u|) takie, ze w(i) < u(i) oraz dla kazdego j < 7,
zachodzi w(j) = u(j).

Fakt 7.8 Porzqdek leksykograficzny nad (A, <) jest czesciowym porzadkiem. Jest on linio-
wym porzadkiem, o ile (A, <) jest liniowym porzadkiem.

Dowdéd: Zwrotno$é relacji < wynika bezposrednio ze zwrotnosci porzadku prefiksowego.
Dla dowodu antysymetrii zalézmy, ze w < v oraz u < w. Jesli u jest prefiksem w oraz w
jest prefiksem wu, to w = u. Jesli natomiast istnieje ¢ < min(|w|, |u|) takie, ze w(i) < u(i)
oraz dla kazdego j < i, zachodzi w(j) = u(j), to u nie moze by¢ prefiksem w a zatem musi
istnie¢ k < min(|w|, |u|) takie, ze u(k) < w(k) oraz dla kazdego j < k, w(j) = u(j). Zatem
ani ¢ < k nie jest mozliwe ani £ < ¢ nie jest mozliwe. Otrzymana sprzecznos¢ dowodzi, ze

8Dowdd lacznodci operacji stadania sléw pozostawimy czytelnikowi.



7 CZESCIOWE PORZADKI 46

jedyny mozliwy przypadek to gdy w jest prefiksem u oraz u jest prefiksem w. Zatem =< jest
antysymetryczna.
Udowodnimy przechodnio$¢ <. Niech w < v oraz u < v. Mamy do rozwazenia nastepujace
mozliwosci:
w jest prefiksem wu; (26)

istnieje i1 < min(Jw|, |u|) takie, ze w(i;) < u(iy) oraz dla kazdego j < iy, w(j) = u(j);

u jest prefiksem v; (28)

istnieje i, < min(|w|, |u|) takie, ze w(iy) < u(iy) oraz dla kazdego j < i, w(j) = u(yj).
(29)

Jesli zachodzi (26) oraz (28) to oczywiscie w jest prefiksem v i w < v. Jedli zachodzi (26)
oraz (29), to jesli |w| < iy, to w jest prefiksem v. Jesli natomiast 7o < |w|, to poniewaz w
jest prefiksem u, to w(is) = u(iy) < v(iz) i na wszystkich wezesniejszych pozycjach w oraz
v sie pokrywaja. Tak wiec w < v. Jesli zachodzi (27) oraz (28), to i; < |v| i rozumujemy
podobnie jak w poprzednim przypadku. Zalézmy wreszcie, ze zachodzi (27) oraz (29). Jesli
i1 < g, to w(iy) < w(iy) < wv(ir), w(in) # u(iy), a zatem w(iy) # v(4;). Ponadto dla j < iy,
w(j) = u(j) = v(j). Zatem w < v. Jesli natomiast is < i; to podobnie pokazujemy, ze iy jest
pierwsza pozycja, na ktérej sie réznia w oraz v i w(is) < v(iz). Tak wiec ponownie w < v,
co konczy dowéd przechodniosci <.

Jesli porzadek < na A jest liniowy, to dla dowolnych stéw w, u, z ktorych zadne nie jest
prefiksem drugiego, jesli ¢ < min(Jw|, |u|) jest najmniejsza liczba taka, ze w(i) # u(i), to
w = u, o ile w(i) < u(i); oraz u = w, w przeciwnym przypadku. Zatem < jest tez liniowym
porzadkiem. W

Jesli, na przyklad, < oznacza porzadek leksykograficzny nad ({0,1}, <), gdzie 0 < 1, to
nastepujacy ciag tworzy lancuch wstepujacy

e<0=<00=<...<0F<0F1 < ...

natomiast ciag
e L O

tworzy tancuch zstepujacy. Ponadto dla dowolnych k,n € N,

0F < 0"1.
Tak wiec, kazdy element pierwszego lancucha jest mniejszy w tym porzadku od kazdego
elementu drugiego tancucha.
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7.2 Drzewa

Niech A bedzie dowolnym zbiorem. Drzewem nad A nazwiemy kazdy niepusty podzbiér
t C A* zamkniety na prefiksy, tzn. dla w € ¢, jesli u < w, to u € t.

7 powyzsze]j definicji wynika, ze kazde drzewo zawiera stowo puste €. Elementy drzewa ¢
nazywamy wierzchotkami. Slowo puste € € t jest nazywane korzeniem drzewa t. Jesli w € t
oraz wa € t dla pewnego a € A, to wa jest nazywane a-tym nastepnikem (lub dzieckiem)
wierzchotka w. Wierzcholek nie majacy nastepnikéw nazywamy lisciem.

Jesli A jest zbiorem nieskonczonym, to w drzewie nad A moga by¢ wierzcholki o nie-
skoniczenie wielu nastepnikach. Rzedem wierzchotka w w drzewie ¢ nazywamy moc zbioru
nastepnikéw tego wierzcholka, tzn. |{a € A | wa € t}|.

Zbiér wierzchotkéw m C ¢ w drzewie ¢ nazwiemy Sciezkaq, gdy jest on liniowo uporzadko-
wany relacja porzadku prefiksowego < oraz spelnia nastepujacy warunek: dla dowolnych
w,u € woraz v € t, jesli w < v < wu, to v € m. Diugosciq Sciezki m nazywamy moc zbioru 7.

Przykladami drzew sa:

e {¢}, drzewo o jednym wierzchotku.

e {a" | n € N}, gdzie a € A jest dowolna ustalona litera.

o {we A* | lw| < n}, pelne drzewo nad A wysokosci n.

e A* pele drzewo nad A.

Jako przykilad waznego twierdzenia uzywajacego powyzszych poje¢ przytoczymy:

Twierdzenie 7.9 (Lemat Koniga)
Niech t C A* bedzie drzewem, w ktorym kazdy wierzchotek jest skoriczonego rzedu. Jesli t
zawiera Sciezki skonczone dowolnej dlugosci, to t zawiera sciezke nieskonczong.

Dowdéd: Niech ¢ bedzie drzewem spelniajacym zalozenia twierdzenia. Zdefiniujemy induk-
cyjnie funkcje réznowartosciowa f : N — t, spelniajaca nastepujacy warunek: dla kazdego
n € N, wierzcholek f(n') jest nastepnikiem f(n) w drzewie ¢ oraz t zawiera sciezki skoriczone
dowolnej dlugosci zaczynajace sie od f(n). Niech f(0) = e. Korzen spelia oczywiscie
powyzszy warunek na mocy zalozen twierdzenia. Przypusémy, ze f(n) jest okreslone i weZzmy
wszystkie nastepniki wierzchotka f(n). Gdyby Sciezki zaczynajace sie od kazdego z nich byty
ograniczonej dhlugosci, to wobec tego, ze f(n) ma tylko skoriczona liczbe nastepnikéw, ist-
nialoby ograniczenie gérne na dlugosé s$ciezek zaczynajacych sie od f(n), whrew zalozeniu
indukcyjnemu. Zatem istnieje nastepnik wierzchotka f(n), od ktérego zaczynaja sie Sciezki
dowolnej skoniczonej dlugosci. Jako f(n') wybieramy jeden z tych nastepnikéw.

Oczywiscie, jak wynika to natychmiast z definicji f, zbiér f{ (N) jest nieskoriczona Sciezka
wit. N
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Niech ¢t bedzie drzewem nad A i niech w € t. Niech
tw = {u e A" | wu € t}.

Fakt 7.10 Dla kazdego drzewa t C A* oraz wierzchotka w € t, zbidr t|y, jest drzewem nad
A.

Dowdéd: Oczywiscie € € t|,. Ponadto jesli v jest prefiksem stowa u, to wv jest prefiksem
stowa wu. Zatem t|, jest zamkniety na prefiksy. W

Moéwimy, ze drzewo r jest poddrzewem drzewa t, oznaczamy to przez r C t, jesli istnieje
wierzcholek w € t taki, ze r = t|,. W tym przypadku méwimy o poddrzewie zaczepionym
w wierzchotku w.

Przyklad 7.11 (Drzewa k-argumentowe) Niech k > 0. Drzewo ¢t C {0, ..., k—1}* nazwiemy
drzewem k-argumentowym, gdy kazdy wierzcholek w ¢, ktéry nie jest liSciem ma rzad k.
Zbiér wszystkich drzew k-argumentowych oznaczamy przez Ty. Zbiér ten, jako rodzina
zbiorow, jest naturalnie czesciowo uporzadkowany przez relecje zawierania. Jedli ¢t C r, gdzie
t,r € Ty, to méwimy, ze drzewo r rozszerza drzewo t. Przez F'T} oznaczamy zbiér wszystkich
drzew skonczonych k-argumentowych.
Przykladami drzew k-argumentowych sa:

o {c}.

e p,={we{0,....k—1}| |w| < n} jest pelnym drzewem k-argumentowym wysokosci
n.

e {0,...,k —1}* jest pelnym drzewem k-argumentowym nieskoriczonym.

oet; ={0" | ne N U{0"l | n € N}uU{0™10 | n € N} U {0211 | n € N} jest

drzewem 2-argumentowym (binarnym).

to={0"|ne N}JU{0"l | ne N}U{0*10 | n € N} U{0*11 | n € N} jest tez
drzewem binarnym.

Pozyteczne moze by¢ narysowanie drzew ;i to.

Przyklad 7.12 (Drzewa k<-argumentowe) Drzewo t C {0,...,k — 1}* nazwiemy drzewem
k=<-argumentowym gdy spelnia ono nastepujacy warunek:

dla kazdego w € t oraz i < k, jesli wi € t, to wj € t, dla kazdego 7 < 1.
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Zbiér wszystkich drzew k<-argumentowych oznaczamy przez Tj<. Symbolem FTj< ozna-
czamy zbidr wszystkich skoriczonych drzew k<-argumentowych. Oczywiscie T}, C Tj< oraz
T,< jest naturalnie uporzadkowany przez C.

Kazde drzewo k-argumentowe jest drzewem k<-argumentowym. Réznica polega na tym,
ze drzewa k<-argumentowe moga mie¢ wierzchotki rzedéw posrednich pomiedzy 01i k. Z kolei
nie kazde drzewo nad {0,...,k — 1}* musi by¢ drzewem k<-argumentowym. Przyktadowo,
{e,1} nie jest drzewem 2<-argumentowym, ale {¢,0} jest. Oczywiécie poddrzewo drzewa
k<-argumentowego jest drzewem k<-argumentowym.

Fakt 7.13 Relacja C ograniczona do zbioru F'T,< drzew skoriczonych jest relacjq cze$ciowego
porzadku.

Dowdéd:  Poniewaz t = t|., to C jest zwrotna. Jesli r = t|, oraz t = s|,, to 7 = (8|y) |w-
Poniewaz
(80) lw = Slow
to r C s, co dowodzi przechodniosci.
Dla pokazania antysymetrii przyjmijmy, ze

r=tl, oraz t=rl,.

Zatem

T =T|wp- (30)
Poniewaz r jest skoniczonym drzewem, to niech u' € r bedzie wierzcholkiem takim, ze |v'|
jest najwieksza liczba w zbiorze {|u| | v € r}. Zatem z (30) wynika, ze wvu' € r, wiec
wv = e. Tak wiec w = v = ¢ i dostajemy r = ¢, co dowodzi antysymetrii C. W

Uwaga: Relacja C nie jest antysymetryczna w zbiorze 7)<, zauwazmy, ze dla drzew ¢, i
to z Przykladu 7.11 mamy t; C ¢, oraz to C ¢y, ale t; # t,.

7.3 Drzewa etykietowane

Wazna klasa drzew pojawiajaca sie czesto w zastosowaniach sa drzewa etykietowane. Niech
Y = {X, }nen bedzie indeksowana rodzina zbioréw. Elementy 3, nazywamy etykietami rzedu
n. Zalézmy, ze Xy zawiera wyrézniony symbol L € 3.

Niech t € Ty<. Drzewem etykietowanym nad X o nosniku ¢ nazwiemy dowolna funkcje
o :t—= U,y En taka, ze dla kazdego n € N oraz w € t, jesli w jest rzedu n, to o(w) € X,,.
Nosnik drzewa etykietowanego o bedziemy oznaczaé przez ||o||. Niech T}<(X) oznacza zbior
wszystkich drzew etykietowanych nad > o no$nikach z Tj<. Analogicznie mozemy zdefiniowac
Ti(2)-

W zbiorze T<(X) zdefiniujemy relacje < nastepujaco. Dla 0,7 € Ti< (%), 0 < 7 wtw,
gdy
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e |lof| € [|7]], oraz
e dla kazdego w € ||o||, jesli o(w) # L, to o(w) = 7(w).
Fakt 7.14 Relacja < zdefiniowana powyzej jest czesciowym porzadkiem w zbiorze Ty<(X).

Dowdd: Relacja ta jest oczywiscie zwrotna i przechodnia. Zalézmy, ze o < 7 oraz 7 < 0.
Wéwcezas mamy ||o|| = ||7|| oraz dla w € ||o]|, jesli o(w) # L lub 7(w) # L, to o(w) = 7(w).
Zatem o(w) = 7(w) zachodzi przy kazdym w € ||o||, czylio=7. B

Ponizej zilustrujemy na dwéch przykladach uzytecznosé pojecia drzewa etykietowanego.

Przyktad 7.15 (Wyrazenia arytmetyczne) Niech rodzina zbioréw etykiet Y bedzie zdefi-
niowana nastepujaco. g = {L,1}, X, = 0, ¥y = {+,x,/}, ¥, = 0 dla n > 2. Drzewa
etykietowane nad ¥ nazwiemy w tym przypadku wyrazeniami arytmetycznymi.

Na przyklad, liczbe naturalna n mozemy przedstawic¢ formalnie jako nastepujace wyrazenie
arytmetyczne n o nosniku

Al ={1" [ i < n}uU{1°0 i< n},
oraz o nastepujacym rozkladzie etykiet
1 jesliw = 1%, i < n,
nw)y=4¢ L jesiw=1"
+ jesiw=1% i<n.

Drzewo to jest przedstawione na rysunku 1.
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n poziomow .

Rysunek 1: Drzewo etykietowane n.

Powyzsze wyrazenie ma wartos¢ n jesli 1 traktowaé jak liczbe ’jeden’, 1 traktowadé
jak liczbe ’zero’ oraz + traktowaé jak operacje dodawania liczb naturalnych. Chcieliby$-
my podkresli¢, ze bez powyzszej interpretacji 1, L oraz + sa jedynie formalnymi symbo-
lami uzywanymi do etykietowania wierzchotkéw w drzewach. Specjalny symbol | w przy-
padku drzew etykietowanych pelni szczegélng role — oznacza on te liscie w drzewie, z,
ktérych mozemy rozbudowywaé drzewo do drzewa wiekszego w sensie porzadku <. Tak
wiec powyzsza reprezentacja liczb naturalnych jako drzew etykietowanych ma dodatkowo te
ceche, ze n < m w sensie porzadku na drzewach etykietowanych, wtw, gdy m < n w sensie
porzadku na liczbach naturalnych.

Uzywajac symboli x i / jak operacji mnozenia i dzielenia mozemy liczby naturalne przed-
stawia¢ na rézne sposoby. Przykiadowo, liczbe 2" mozemy przedstawié¢ uzywajac podobnego
wyrazenia jak 71, z tym ze + w 71 zastepujemy przez x, 1 zastepujemy przez drzewo 2 oraz
1 zastepujemy przez 1. Zauwazmy, ze taka reprezentacja liczby 2" uzywa liniowej w sto-
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sunku do n liczby wierzcholkéw w odréznieniu od wykladniczej w drzewie 27. Na rysunku
2 przedstawiamy drzewo etykietowane d,, ktére reprezentuje liczbe 2" przy pomocy wyzej

wspomnianego wyrazenia.

n razy

Rysunek 2: Drzewo etykietowane &,,.

Szereg nieskonczony Y¥:%°,1/2¢ mozemy przedstawié jako nieskoriczone drzewo etykieto-
wane 0. Drzewo to jest graficznie przedstawione na rysunku 3.
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On

Rysunek 3: Drzewo etykietowane o.

W drzewie etykietowanym z rysunku 3 i rysunku 4 symbole 91, do, . . ., d,, nie sa etykietami.
Oznaczaja one miejsca, na ktore nalezy wstawié¢ drzewa etykietowane zdefiniowane na rysunku
2.

Sume czesciowa X7, 1/2° tego szeregu wéwczas reprezentujemy przy pomocy nastepujacego
skoriczonego drzewa etykietowanego o, (zob. Rysunek 4).

Mamy wéwczas nastepujacy wstepujacy tancuch wyrazen

op<...<o.

01 <09 < <

Powyzsze aproksymowanie wyrazenia o skoniczonymi wyrazeniami o,, ma charakter czysto
symboliczny, tzn. nie maja nic wspélnego ze zbieznoscia szeregdéw liczb rzeczywistych.
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1 On

Rysunek 4: Drzewo etykietowane o,, n-ta aproksymacja drzewa o.

Przyklad 7.16 (Drzewa formalnych obliczeri) Wezmy nastepujace zbiory etykiet: Y, =
{'sTOP',
1} % ={x:=2%, 'y:=y—-1, 'x:=1}, X = {'y#0}, &, = 0, dlan > 2. Ety-
kiety, chociaz kojarza sie z instrukcjami jezyka programowania, sa tutaj jedynie formalnymi
napisami — dla zaznaczenia tego napisy te umiesciliSmy w cudzystowie.

Rozwazmy nastepujacy program P w Pascalu.

x:=1;
while y#0do
begin x :=2x; y:=y—1end

Program ten mozemy przedstawi¢ w postaci schematu blokowego (zob. Rysunek 5) dla
pokazania mozliwosci przeplywu sterowania w programie w czasie obliczenia.
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Y
(o )
+ —
X:=2x STOP
A
y:=y-1

Rysunek 5: Schemat blokowy programu P.

Powyzszy schemat rozwijamy do nieskonczonego drzewa. W drzewie tym w naturalny
sposob etykietujemy wierzchotki symbolami z powyzszego zbioru etykiet. Tak otrzymane
drzewo etykietowane 7 € T,<(X) nazywa sie drzewem formalnych obliczer programu P, a
Sciezki w tym drzewie nazywa sie Sciezkami formalnych obliczer programu P. Przedstawiamy
go na rysunku 6.
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>STOP’

>STOP’

>STOP? ’x:=2x’

Rysunek 6: Drzewo etykietowane 7 formalnych obliczen programu P.

Dla n € N niech drzewo m,, przedstawione na rysunku 7, oznacza skonczona aproksy-
macje drzewa w. Drzewo to reprezentuje formalne obliczenia programu P powstajace w
wyniku co najwyzej n przej$¢ w P przez petle while. Osiagniecie przez obliczenie sym-
bolu L w 7, intuicyjnie oznacza zapetlenie sie obliczenia. Zgodnie z definicja porzadku na
drzewach etykietowanych mamy nastepujacy ancuch.

7r0§7r1§...7rn§...§7r.

Dla programu P definiuje sie funkcje obliczana przez ten program. Funkcje te nazywa sie
znaczeniem lub semantykq programu P. W przypadku drzew formalnych obliczen nieréwnosé
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7w < 7 implikuje, ze funkcja czeSciowa obliczana przez program odpowiadajacy drzewu 7’
jest zawarta w funkcji czeSciowej obliczanej przez program odpowiadajacy 7.

n + 1 razy

Rysunek 7: Drzewo etykietowane 7,.

Przyklad 7.17 Na zakonczenie czesci zwiazanej z drzewami etykietowanymi wprowadzimy
jeszcze jedna relacje czeSciowego porzadku, ktéra bedzie wykorzystana pdznie;j.
Niech
FT(S) = | FTie(9)

kEN



7 CZESCIOWE PORZADKI 58

bedzie zbiorem wszystkich skoriczonych k<-argumentowych drzew etykietowanych nad X przy
k przebiegajacym wszystkie liczby naturalne. Elementy FT(X) bywaja nazywane termami
nad X. Pojecie poddrzewa, ktore zdefiniowaliSmy dla drzew nieetykietowanych, przenosi sie
na wazne pojecie podtermu zdefiniowane nastepujaco. Niech 0,7 € FT(X). Term o jest
podtermem termu 7 (oznaczamy to przez o C 7), jesli istnieje wierzcholek w € ||7|| taki, ze

e [lofl = (l|7[])|w, oraz

Definicja zbioru FT(X) oraz relacja podtermu oczywiscie stosuja sie do przypadku, gdy
Yy nie zawiera L. Tym niemniej musimy zatozy¢, ze ¥y # (), gdyz w przeciwnym przypadku
mieliby$smy FT'(X) = 0.

Fakt 7.18 Relacja C zdefiniowana powyzej jest cze$ciowym porzadkiem w FT(X).

Dowdd: Wynika natychmiast z Faktu 7.13. Latwy dowdd pozostawiamy czytelnikowi. W

7.4 Kresy zbioréw, kraty zupelne

Niech (P, <p) oraz (@, <g) beda zbiorami czesciowo uporzadkowanymi. Funkcje f: P — Q
nazwiemy monotoniczng gdy dla x,y € P

jesli z <p y, to f(z) <g f(y).

Funkcja f jest izomorfizmem gdy f oraz f—! sa monotonicznymi bijekcjami. Izomorficzne
zbiory czesciowo uporzadkowane oznaczamy (P, <p) ~ (Q, <g)-
Jako przyklad izomorficznych cze$ciowych porzadkéw zanotujmy nastepujacy fakt.

Fakt 7.19 Mamy nastepujace izomorfizmy

Dowdéd:  Funkcja f; : N — {0}*, zdefiniowana wzorem f;(n) = 0", dla n € N ustala
izomorfizm (N, <) ~ ({0}* <). Natomiast funkcja fo : {0}* — FT; zdefiniowana wzorem
f2(0") = {0° | 4 < n} ustala izomorfizm ({0}*, <) ~ (FT;,C). W

Niech (P, <) bedzie czesciowym porzadkiem. Element p € P nazwiemy najwiekszym w
(P, <) jesli dla kazdego = € P zachodzi z < p. Element p € P nazwiemy maksymalnym gdy
dla kazdego = € P, jesli p < z, to p = z, tzn. gdy zaden element nie jest $cisle wiekszy od p.
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Zauwazmy, ze jesli (P, <) jest czesciowym porzadkiem, to (P, <™') jest tez czesciowym
porzadkiem. Porzadek ten nazywamy porzadkiem dualnym do (P,<). Jesli mamy pewne
pojecie zdefiniowane dla czesciowych porzadkéw, to pojecie do niego dualne otrzymuje sie
przez zamiane w tej definicji symbolu < symbolem <7!. Przykladowo, pojeciem dualnym
do wilasnosci “by¢ elementem maksymalnym” jest pojecie “by¢ elementem minimalnym”
otrzymane przez dualizacje powyzszej definicji. Otrzymujemy nastepujaca definicje: p € P
jest elementem minimalnym, gdy dla kazdego x € P, jesli x < p, to p = x. Tak wiec p
jest minimalny wtw, gdy p jest maksymalny w porzadku dualnym. Dualnym pojeciem do
definicji elementu najwiekszego jest pojecie elementu najmniejszego.

Przyklad 7.20 Elementem najwiekszym w (P(A), C) jest A, a najmniejszym jest (). Ele-
mentem najmniejszym w (A* <) jest ¢, a elementu najwiekszego nie ma. Elementem naj-
mniejszym w (T, C) jest @, a najwiekszym {0, 1}*. Elementem najmniejszym w (Tj<(2), <)
jest drzewo jednowierzchotkowe z eteykieta L (ktére tez bedzie oznaczane przez 1), a ele-
mentu najwiekszego nie ma.

Fakt 7.21 FElement najwiekszy jest maksymalny. KazZdy porzadek czeSciowy ma co najwyzej
jeden element najwiekszy.

Dowéd: Niech p € P bedzie elementem najwiekszym w (P, <). Jesli p < z, to poniewaz
z < p, to z antysymetrii porzadku otrzymujemy p = x.

Jesli p; oraz py sa elementami najwiekszymi w (P, <), to mamay p; < py oraz py < ps.
Zatem p; =po. N

Zachodzi tez twierdzenie dualne do powyzszego twierdzenia.

Niech (P, <) bedzie czeSciowym porzadkiem i niech X C P bedzie dowolnym podzbiorem.
Element a € P nazwiemy ograniczeniem gornym zbioru X, gdy dla kazdego x € X zachodzi
xz < a. Najmniejsze ograniczenie gérne zbioru X (o ile istnieje) nazywamy kresem gérnym
zbioru X. Zatem a € P jest kresem gérnym zbioru X, gdy

e o jest ograniczeniem gérnym X, oraz
e dla kazdego b € P, jesli b jest ograniczeniem gérnym X, to a < b.

Kres gérny zbioru X, o ile istnieje, oznaczamy | | X. Dualnymi pojeciami sa: ograniczenie
dolne i kres dolny. Kres dolny zbioru X (o ile istnieje) oznaczamy [|X.

Zastanéwmy sie kiedy zbidér pusty ) ma kres gérny (dolny) w porzadku (P, <). Za-
uwazmy, ze kazdy element zbioru P jest zaréwno ograniczeniem gérnym jak i dolnym 0.
Zatem, | | (odpowiednio, []() istnieje w (P, <) wtw, gdy P ma element najmniejszy (od-
powiednio najwiekszy). Element najmniejszy w (P, <) oznaczamy | a element najwiekszy
oznaczamy 1. Kres zbioru moze zaleze¢ od tego w jakim zbiorze czesciowo uporzadkowanym
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jest brany. Jesli zachodzi koniecznos$¢ zaznaczenia w jakim porzadku brany jest kres (element
najmniejszy, itp.) to mozemy zaznaczaé to uzywajac indeksu, na przyktad |_|J‘D X.

Porzadek (P, <) nazwiemy kratq zupetna, gdy kazdy podzbiér zbioru P ma kres gérny i
kres dolny.

Twierdzenie 7.22 Niech (P, <) bedzie czesSciowym porzadkiem. Nastepujace warunki sq
rownowazne.

(i) (P, <) jest krata zupetng.
(i1) Kazdy podzbior P ma kres gérny w (P, <).
(iii) Kazdy podzbior P ma kres dolny w (P, <).
Dowéd: Implikacje (i) = (ii) oraz (i) = (iii) oczywiscie zachodza. Udowodnimy implikacje

(ii) = (i). Zalézmy, ze kazdy podzbidér zbioru P ma kres gérny. Niech X C P i niech YV
bedzie zbiorem wszystkich ograniczen dolnych zbioru X w (P, <). Niech

p0:|_|Y.

Niech x € X. Poniewaz dla kazdego y € Y, mamy y < x to x jest ograniczeniem gérnym
zbioru Y. Zatem py < x, co wobec dowolnosci wyboru z dowodzi, ze py jest ograniczeniem
dolnym zbioru X. Jesli y jest ograniczeniem dolnym zbioru X, to y € Y, a zatem y < py.
Czyli py jest najwiekszym ograniczeniem zbioru X, wiec

pozl—IX-

Rozwazmy kilka przykladéw.

Przyklad 7.23

(i) (P(A), C) jest krata zupela dla kazdego zbioru A. Kresem gérnym rodziny zbioréw
A C P(A) jest suma | J A, a kresem dolnym jest przeciecie [ A, o ile A # (), oraz A
jesli A = (). Sprawdzenie powyzszych wlasnosci pozostawiamy czytelnikowi.

(ii) (N, <) nie jest krata zupelna bo N nie ma kresu gérnego (bo nie ma ograniczenia
gérnego). Kazdy niepusty podzbiér N ma kres dolny (bo ma element najmniejszy).

(iii) W porzadku prefiksowym ({0, 1}*, <) zbiér {0, 1} nie ma kresu gérnego ale ma kres
dolny: [{0,1} = ¢. Wynika to stad, ze {¢} jest jedynym prefiksem stéw 0 oraz 1.
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(iv) W porzadku leksykograficznym ({0,1}*, <) (przy uporzadkowaniu liter: 0 < 1)
mamy

| {owe{o,1} [we{0,1}} =1

Istotnie, dla kazdego w € {0, 1}*, mamy Ow < 1. Ponadto jesli dla kazdego w € {0, 1}*
stowo Qw jest leksykograficznie wczesniejsze od pewnego ustalonego stowa u to u musi
sie zaczynaé od litery 1 (gdyby u = O0u' dla pewnego slowa u', to mielibySmy w < v’
dla dowolnych w € {0,1}*, a zatem v’ byloby najwiekszym elementem w ({0, 1}*, <),
co daje sprzecznosé). Zatem 1, jako prefiks stowa u, jest leksykograficznie wezesniejszy
od u.

Natomiast zbiér X = {0™ € {0,1}* | n € N} nie ma kresu gérnego w tym porzadku
pomimo tego, ze ma wiele ograniczen gérnych. Jesli w jest ograniczeniem gérnym
zbioru X, to w musi zawiera¢ 1. Zatem istnieje stowo w' oraz n € N takie, ze w = 0"1w'.
Wéwezas 0" 11w’ jest ograniczeniem gérnym X mniejszym leksykograficznie od w.
Pokazalismy wiec, ze X nie ma najmniejszego ograniczenia gérnego.

(v) Kresem dolnym zbioru {1/3" | n € N} w zbiorze liczb rzeczywistych R, uporzadko-
wanym zwykla relacja <, jest 0. Kazdy niepusty zbiér ograniczony w R z géry (z dotu)
ma kres gérny (dolny) w R. Natomiast () nie ma ani kresu gérnego ani dolnego w R.

(vi) | {on | n > 1} = o, w porzadku z Przykladu 7.15 dla wyrazeri arytmetycznych.
Wyrazenie o, formalnie reprezentuje skoriczony szereg X7 1/2¢ (zob. Rysunek 4 w
Przykladzie 7.15). Natomiast wyrazenie o formalnie reprezentuje nieskoriczony szereg
¥ 11/2% (zob. Rysunek 3 w Przykladzie 7.15). Pozostawimy czytelnikowi pokazanie,
ze o jest kresem gérnym wyrazen o,.

(vii) | {7, € To<(X) | n € N} = m, w porzadku z Przykladu 7.16 dla drzew formal-
nych obliczen. Drzewo 7w oraz drzewa m, sa przedstawione na Rysunkach 6 oraz 7
Przykiadu 7.16. Pozostawimy czytelnikowi jako ¢wiczenie pokazanie, ze m jest kresem
gérnym drzew 7,,.

(viii) Niech (EQ(A), C) bedzie zbiorem wszystkich relacji réwnowaznosci w A, uporzad-
kowanym relacja zawierania. Poniewaz, jak latwo jest pokazaé, przeciecie dowolnej
niepustej rodziny relacji réwnowaznosci jest relacja réwnowaznosci oraz EQ(A) ma
element najwiekszy: A X A, to kazdy podzbiér w EQ(A) ma kres dolny, a zatem,
zgodnie z Twierdzeniem 7.22, (EQ(A), C) jest krata zupelna. W kracie tej kres gérny
rodziny relacji réwnowaznos$ci nie zawsze pokrywa sie z suma teoriomnogosciowa tej
rodziny.?

9Suma relacji réwnowaznoéci nie musi byé relacja réwnowaznosci.
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7.5 Twierdzenia o punkcie stalym

Twierdzenie 7.24 (Knaster-Tarski)
Niech (P, <) bedzie kratq zupetna i niech f: P — P bedzie funkcja monotoniczng. Wtedy f
ma najmniejszy punkt staty, tzn. istnieje ay € P, taki ze

o f(ao) = ay,
e dla kazdego b € P, jesli f(b) =b, to ag < b.
Dowéd: Niech X = {z € P | f(z) <z} i niech

ap :|—|X

Jesli x € X to ap < x i z monotonicznosci f oraz z definicji zbioru X otrzymujemy

flao) < f(z) < .

Zatem f(ag) jest ograniczeniem dolnym zbioru X. Poniwaz ag jest najwiekszym ogranicze-
niem dolnym X to

f(a,o) S agp. (31)

Powyzsza nieréwnos¢ oraz monotonicznosé¢ f daja

f(f(ao)) < f(ao),

zatem f(ag) € X. Tak wiec, poniewaz aq jest dolnym ograniczeniem X to ay < f(ag). Ta
nieréwno$¢ w polaczeniu z (31) daje

ap = f(ao)-

Aby pokazaé, ze agy jest najmniejszym punktem statym f zalézmy, ze f(b) = b. Zatem
b € X oraz ag < b. To konczy dowdd twierdzenia. W

Przyklad 7.25 Podamy trzy przyklady ilustrujace zastosowanie twierdzenia Tarskiego.

(i) Zalézmy, ze A jest alfabetem zawierajacym 0 i 1. Niech f : P(A*) — P(A*) bedzie
funkcja zdefiniowana nastepujaco:

fX)={e}uU{ow | we X}U{lw | we X}.

Wtedy f jest funkcja monotoniczna oraz zbiér {0,1}* jest najmniejszym punktem
statym f.1°

10W tym przypadku mozna dodatkowo pokazaé, ze ten zbidr jest jedynym punktem stalym f.
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(ii) Niech A bedzie dowolnym zbiorem i niech R C A x A bedzie dowolna relacja w
zbiorze A. Rozwazmy nastepujaca funkcje ¢ : P(A x A) — P(A x A),

o(X)=RUILU(XX)UX
Pokazemy, ze dla dowolnej relacji X C A x A,
e(X)C X wtw, gdy X jest relacja réwnowaznosci zawierajaca R. (32)

Powyzsza réwnowaznos¢ wynika natychmiast z nastepujacych trzech réwnowaznosci,
ktorych dowéd pozostawimy czytelnikowi.

I,CX wtw,gdy X jest relacja zwrotna.

XX CX wtw,gdy X jest relacja przechodnia.
X'CX wtw,gdy X jest relacja symetryczna.

Zatem najmniejszy punkt staly przeksztalcenia ¢ jest najmniejsza relacja rownowaznosci
zawierajaca dana relacje R.

(iii) Dowéd Lematu Banacha
Dla dowodu Lematu Banacha (zob. Twierdzenie 6.10) wezmy dowolne funkcje f: A —
B oraz g : B — A i zdefiniujmy ¢ : P(A) — P(A) wzorem,

—

p(X) =A-g(B - f(X)).

Poniewaz operacja dopelnienia jest antymonotoniczna, tzn. odwraca porzadek zawie-
rania oraz operacja obrazu jest monotoniczna, to funkcja ¢ jest monotoniczna. Niech
A; bedzie najmniejszym punktem stalym . Pozostale zbiory sa juz wyznaczone jed-
noznacznie przez A;, a mianowicie Ay = A — Ay, B, = f(Al), oraz B, = B — Bj.
Pozostaje do pokazania, ze

Ay = §(Bs). (33)
Poniewaz B
§(B2) = ﬁ(B - Bl) = ﬁ(B - f(Al)):
to
A=§(Bs) = A= §(B - f(A1)) = p(4) = Au.
Zatem

G(Bs) = A— A = Ay,
co dowodzi (33). N
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Jak zobaczymy w dalszej czesci wykladu zdarzaja sie sytuacje gdy zalozenie, ze dziedzina
funkcji ma by¢ krata zupelna jest zbyt silne. W tym celu wprowadzimy nastepujace definicje.
Podzbiér X zbioru uporzadkowanego (A, <) nazwiemy skierowanym, gdy X # () oraz kazde
dwa elementy w X maja ograniczenie gérne w X, tzn. dla dowolnych a,b € X, istnieje c € X,
taki ze @ < c oraz b < c¢. Pojecie zbioru skierowanego jest bardzo waznym uogdlniniem
pojecia tancucha. Zbiér uporzadkowany (A, <) nazwiemy zupelnym porzadkiem, gdy A ma
element najmniejszy oraz kazdy zbidér skierowany ma kres gérny. Niech (A, <) oraz (B, <)
beda zupelymi porzadkami. Funkcje f : A — B nazwiemy ciqgtq, gdy zachowuje ona kresy

—

gérne zbioréw skierowanych, tzn. gdy dla dowolnego zbioru skierowanego X w (A, <), f(X)

ma kres goérny oraz
F(x) =7
Fakt 7.26
(i) Kazda funkcja ciagla jest monotoniczna.
(i1) Ztozenie funkcji ciaglych jest funkcja ciagla.

Dowéd: Dla dowodu (i) niech f : A — B bedzie funkcja ciagla pomiedzy zupelmymi
porzadkami. Jesli a; <4 ag to zbidr {ay, as} jest skierowany. Zatem

flas) = f(l_l{ah as}) = |_|{f(a1)a fla2)}-
Oznacza to, ze
f(a1) <p f(az).

A zatem f jest monotoniczna.
Dla dowodu (ii) zauwazmy, ze obraz zbioru skierowanego przy przeksztalceniu ciaglym
jest zbiorem skierowanym. Wynika to z monotonicznoéci funkcji ciagltych. B

Podamy teraz dwa wazne przyklady zupelnych porzadkéw nie bedacych kratami zupelnymi.
Sprawdzenie, ze porzadki te sa zupele pozostawimy czytelnikowi.

Przykiad 7.27
(i) Dla kazdego k, porzadek (T,<(X), <) (zob. Przyklad 7.15) jest zupelny.

(ii) Dla dowolnych zbioréw A, B, zbiér PF (A, B) wszystkich funkcji czesciowych z A
w B uporzadkowanych relacja zawierania jest zupelnym porzadkiem. Kresem gérnym
zbioru skierowanego funkcji czesciowych jest suma teoriomnogosciowa.
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Twierdzenie 7.28 Niech (A, <) bedzie zupelnym porzadkiem oraz niech f : A — A bedzie
funkcja ciagta. Wtedy f ma najmniejszy punkt staly a, oraz

=| {f"(L) | ne N}

Dowéd: Najpierw zauwazmy, ze {f™"(L) | n € N} jest laficuchem, a zatem zbiorem skiero-
wanym. Wynika to natychmiast z nastepujacej wlasnosci. Dla kazdego n € N,

frL) < ). (34)

Dowdd (34) przeprowadzamy przez indukcje wzgledem n. Dla n = 0 wynika to natychmiast
z tego, ze L jest najmniejszym elementem. Krok indukcyjny wynika z monotonicznosci f.
Tak wiec ap = | |{f"(L) | n € N} istnieje. Mamy:

flao) = FLJr (L) [neN})
= | ) [ ne Ny
= LJdm ) [ ne Nyu{L})
= |_|{f" ) | ne N}

W powyzszym ciagu réwnosci druga rownosé¢ wynika stad, ze f jest funkcja ciagla, natomiast
trzecia rownos¢ wynika stad, ze dodanie elementu najmniejszego 1. do dowolnego zbioru nie
zmienia kresu gérnego.

Tak wiec ag jest punktem stalym. Pozostaje do wykazania, ze jest to najmniejszy punkt
staly. Niech f(b) = b bedzie dowolnym punktem stalym. Przez oczywista indukcje ze wzgledu
na n pokazujemy, ze dlan € N,

frL) <o (35)
Dowdd (35) pozostawimy czytelnikowi. Zatem b jest ograniczeniem gérnym zbioru { f*(L) | n €
N}, czyli ap < b. To koniczy dowéd twierdzenia. W

Podamy dwa przyklady na zastosowanie powyzszego twierdzenia.

Przyklad 7.29

(i) Niech ¥ bedzie rodzina etykiet z przykladu 7.16. Niech ¢ : Th<(X) — TH<(X) bedzie
funkcja zdefiniowana nastepujaco. Dla o € Ty< (X)),

[lp(o)l] = {e,0,1,10} U {100w | w € ||o|[}.
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Dla w € ||¢(0)|| definiujemy

'y #0, gdy w =,
'STOP', gdy w =0,
olo)(w) =< 'x:= 2%/, gdy w=1,
'yi=y—1, gdy w =10,
o(u), gdy w = 100u, u € ||o||.

Funkcja ¢ jest naturalnym ztozeniem pewnych prostych funkcji (jakich?). Mozna po-
kazaé, ze kazda z tych funkcji jest ciagla, a zatem ¢, na mocy Lematu 7.26, jest funkcja
ciagla. Pozostawimy to jako ¢wiczenie dla czytelnika.

Zauwazmy, ze n-krotna iteracja ¢" (L) przedstawia drzewo formalnych obliczen reprezen-
tujacych co najwyzej n wykonar petli w programie (zob. Rysunek 7 w Przyktadzie 7.16)

whiley#0dox:=2x; y:=y—1od

Natomiast najmniejszy punkt staly ¢, jako kres gérny ciagu iteracji, przedstawia
drzewo formalnych obliczen calego powyzszego programu (zob. Rysunek 6 w Przykla-
dzie 7.16).

(ii) Przypomnijmy, ze PF (A, B) oznacza zupelny porzadek funkcji czeSciowych z Przyk-
tadu 7.27 (ii). Niech ¢ : PF(N x N,N) — PF(N x N, N) bedzie funkcja zdefiniowana
nastepujaco dla f € PF(N x N,N), oraz m,n € N

m, jeslin =0,
o(f)(m,n) =< f(m, k), jesli n = k' oraz (m, k) € Dom(f),
nieokreslone, w przeciwnym przypadku.

Pozostawimy czytelnikowi jako ¢wiczenie wykazanie, ze ¢ jest funkcja ciagla. Za-
uwazmy, ze jeSli f jest punktem stalym ¢, to Dom(f) = N x N, tzn. f jest funkcja
totalna. Wynika to z nastepujacego faktu, ktérego dowdd indukcyjny pozostawimy
czytelnikowi.

Jesli f jest punktem stalym ¢, to dla kazdego n € N zachodzi nastepujaca wlasnosé

dla kazdego m € N, zachodzi (m,n) € Dom(f). (36)

Tak wiec powyzsza definicja ¢ oraz (36) implikuja, ze kazdy punkt staly f prze-
ksztalcenia ¢ musi spelnia¢ nastepujace warunki
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Czytelnik z latwoscia rozpozna indukcyjna definicje dodawania (zob. Przyklad 4.7).
Tak wiec najmniejszym (i jedynym) punktem statym ¢ jest funkcja dodawania. Iteracja
©"(L) przedstawia operacje czesciowego dodawania m—+k dla k < n orazm € N. Suma
teoriomnogosciowa tych operacji daje oczywiscie pelna operacje dodawania.

(iii) Dowéd twierdzenia o definiowaniu funkcji przez indukcje

Stosujac rozumowanie podobne do powyzszego przykladu udowodnimy teraz Twier-
dzenie 4.8. Niech A i B beda dowolnymi zbiorami. Niech g : A — B oraz niech
h:Bx Ax N — B beda dowolnymi funkcjami. Pokazemy ze istnieje dokladnie jedna
funkcja f : A x N — B spelniajaca nastepujace warunki dla dowolnego a € A,

f(a,0) = g(a),
f(a,n") = h(f(a,n),a,n).

Jednoznacznos¢ dowodzi sie pokazujac przez bardzo prosta indukcje, ze jesli fi i fo
spelniaja powyzsza definicje to dla kazdego a € A,

dla kazdego n € N, fi(a,n) = fa(a,n).

Dla dowodu istnienia uzyjemy, podobnie jak w poprzednim przykladzie, Twierdze-
nia 7.28. Niech ¢ : PF(A x N,B) — PF(A x N, B) bedzie funkcja zdefiniowana

nastepujaco
g(a), jeslin =0,
o(f)la,n) = q h(f(a,k),a,k), jeslin=~F (a,k) € Dom(f),
nieokreslone, w przeciwnym przypadku.

Funkcja ¢ jest ciagla jako zlozenie pewnych naturalnych funkcji ciagtych (jakich?).

Dowdd ciaglosci pozostawimy czytelnikowi jako ¢wiczenie. Podobnie jak w poprzednim

przykladzie zauwazamy, ze punkty stale ¢ sa funkcjami totalnymi oraz, ze wszystkie

punkty stale ¢ spelniaja powyzsza definicje indukcyjna. To konczy dowdd istnienia f.
|

7.6 Lemat Kuratowskiego-Zorna

Ponizsze twierdzenie, znane jako lemat Kuratowskiego-Zorna, odgrywa wazna role w dowo-
dach istnienia pewnych obiektow. Dowody wykorzystujace te metode sa niekonstruktywne
bowiem dowdd istnienia obiektu nie podaje konstrukeji tego obiektu. Dowdd tego twierdzenia
zostanie podany w nastepnym rozdziale.

Twierdzenie 7.30 (Lemat Kuratowskiego-Zorna)
Jesli (A, <) jest niepustym zbiorem czesciowo uporzadkowanym, w ktérym kazdy taricuch ma
ograniczenie gorne, to A ma element maksymalny.
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Przyklad 7.31 Dla zilustrowania sposobu zastosowania tego twierdzenia pokazemy, ze kazdy
czeSciowy porzadek mozna rozszerzy¢ do porzadku liniowego, tzn. jesli (A, rq) jest zbiorem
czesciowo uporzadkowanym, to istnieje liniowy porzadek r, na A, taki ze ry C r,.

Niech R oznacza zbior wszystkich czeSciowych porzadkéow r na A, takich ze ro C r.
Niech £ bedzie laficuchem w R (ze wzgledu na relacje zawierania C). Jesli £ = 0, to rg
jest ograniczeniem gérnym L. Zalézmy wiec, ze £ # (). Ma miejsce nastepujacy fakt (jego
dowdd pozostawimy czytelnikowi).

Fakt 7.32 Suma teoriomnogosciowa tancucha czeSciowych porzedkow w A jest czesciowym
porzadkiem w A.

Z faktu 7.32 natychmiast wynika, ze |JL£ jest ograniczeniem gérnym'' w R laficucha

L. Zatem, na mocy lematu Kuratowskiego-Zorna, R ma element maksymalny r,. Liniowo$¢
porzadku r, wynika natychmiast z nastepujacego faktu, ktory tez pozostawiamy czytelnikowi
do udowodnienia.

Fakt 7.33 CzeSciowy porzadek r na A jest maksymalnym elementem w zbiorze wszystkich
czesciowych porzadkéw na A (ze wzgledu na relacje zawierania), wtw, gdy r jest liniowym
porzadkiem.

Zadania

7.1. Dowies¢, ze dla dowolnego drzewa s € F'1}<, oraz stéw v, w takich, ze vw € s, zachodzi
(80)lw = Slvw-

7.2. Dowies¢, ze relacja “by¢ podtermem” jest relacja czesciowego porzadku w zbiorze wszy-
stkich terméw FT(X).

7.3. Dowies¢, ze w zbiorze czeSciowo uporzadkowanym (P(A), C) kres gérny dowolnej ro-
dziny zbiorow pokrywa sie z suma teoriomnogo$ciowa oraz kres dolny dowolnej niepu-
stej rodziny zbioréw pokrywa sie z przecieciem teoriomnogosciowym.

7.4. Dowies¢, ze | [{o, | n > 1} = o, w porzadku z Przykladu 7.15 dla wyrazen arytme-
tycznych.

7.5. Dowies¢, ze | {m, € To<(X) | n € N} = 7, w porzadku z Przykladu 7.16 dla drzew
formalnych obliczen.

7.6. Dowies¢, ze funkcja f z Przykladu 7.25 (i) ma doktadnie jeden punkt staly.

"Poniewaz £ # 0, to ro C |J L.



7 CZESCIOWE PORZADKI 69

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

Dowiesé, ze dla dowolnych zbioréw A, B, zbiér PF(A, B) wszystkich funkcji czesciowych
z A w B, uporzadkowany relacja zawierania jest zupelnym porzadkiem.

Niech (A, <,) oraz (B, <pg) beda zupelnymi porzadkami. W produkcie A x B defi-
niujemy relacje < w nastepujacy sposéb: (a1, b1) < {as,bs) wtw, gdy a1 <4 ao oraz
b1 <p by. Dowiesé, ze (A x B, <) jest zupelnym porzadkiem.

Niech (A, <a) oraz (B, <g) beda zupelymi porzadkami. Niech [A, B] oznacza zbiér
wszystkich funkcji ciagltych z A w B. Niech < bedzie relacja w [A, B] zdefiniowana
nastepujaco: f < g wtw, gdy dla kazdego a € A zachodzi f(a) <p g(a). Dowies¢, ze
([A, B], <) jest zupelnym porzadkiem.

Dowiesé, ze kazda funkcja stala pomiedzy zupelnymi porzadkami jest ciagla.

Niech f € ¥, zdefiniujemy ¢ : Tp<(3)" — Ti<(3) nastepujaco dla oy,...,0n,-1 €
TkS (E)’

les(00, -, 001l = {e} U J{iw | w € [Joill},

i<n
oraz
— f7 gdy w=Ee,
QDf(O'(), e ,Unfl)(w) - { O'i(U), gdy 1 < noraz w = iu.

Dowiesé¢, ze ¢y jest funkcja ciagla.

Niech (A4, <y4) oraz (B, <p) beda zupelnymi porzadkami. Niech ¢ : [A,B] x A — B
bedzie funkcja zdefiniowana dla f € [A, B] oraz a € A nastepujaco,

o(f,a) = f(a)
Dowiesé, ze ¢ jest funkcja ciagla.

Dowiesé, ze dla dowolnych zbioréw A, B,C, funkcja ¢ : PF(A,B) x PF(B,C) —
PF(A,C) zdefiniowana wzorem ¢(f,g) = gf jest funkcja ciagla.

Dowiesé, ze dla dowolnych zbioréw A, B, C, funkcja ¢ : PF(A,B) x PF(A,C) —
PF(A, B x C) zdefiniowana wzorem

o(f,9)(a) = { (f(a),g(a)), gdy a € Dom(f) N Dom(g),

nieokreslone, w przeciwnym przypadku,
jest funkcja ciagta.

Niech AlﬂAQ = @ DOWieéé, ze funkcja Q. PF(Al, B) XPF(AQ, B) — PF(A1UA2, B)
zdefiniowana wzorem ¢(f, g) = f U g jest funkcja ciagta.
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7.16. Niech C C A. Dowies¢, ze funkcja ¢ : PF(A, B) — PF(C, B), zdefiniowana wzorem
o(f) = fN(C x B) jest funkcja ciagta.

7.17. Dowiesé, ze nastepujaca operacja definiowania warunkowego jest funkcja ciagla.
Niech A;, A C A, A;N Ay = (. Niech ¢ : PF(A, B) x PF(A, B) — PF(A, B) bedzie
zdefiniowana nastepujacym wzorem dla f,g € PF(A, B) oraz a € A,

f(a), gdy a € Ay N Dom(f),

o(f,9)(a) = 9(a), gdy a € A2 N Dom(g),
nieokreslone, w przeciwnym przypadku.

Dowies¢, ze ¢ jest funkcja ciagla.

7.18. Udowodnié Fakt 7.32 oraz Fakt 7.33.



