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4 Funkcje

Niech A i B beda zbiorami. Funkcje z A do B nazwiemy uporzakowana tréjke (f, A, B),
gdzie f C A x B jest relacja spelniajaca nastepujace dwa warunki.

Dla dowolnych a € A oraz by, by € B, jesli {a,b;) € f oraz {a,by) € f, to by =by.  (7)

Dla kazdego a € A istnieje b € B taki, ze {a,b) € f. (8)

W przypadku, gdy (f, A, B) jest funkcja z A do B, to méwimy zwykle, ze f jest funkcja
z A do B i oznaczamy to przez f : A — B. Zauwazmy, ze funkcja jest zadana nie tylko przez
relacje f, ale réwniez przez zbiory: A (zwany dziedzing) oraz B (zwany przeciwdziedzing). W
szczegolnosci moze tak sie zdarzy¢, ze mamy dwie rézne funkcje f: A - Borazg: A — C,
gdzie B # C oraz relacje f i g sar6wne. Na przyklad, (14, A, A) oraz (14, A, B), gdzie A C B
jest wlasciwym podzbiorem, sa dwiema réznymi funkcjami (bo sie réznia przeciwdziedzna).
Tak wiec, zgodnie z umowa, mamy I4 : A — Aoraz I4 : A — B. Te druga funkcje zgrabniej
jest oznaczy¢, np. 14 5 : A — B, podkreslajac jej zaleznos¢ od B, chociaz teoriomnogosciowo,
jako relacje mamy I4 = 14 p. Bedziemy sie starali unika¢ uzywania niejednoznacznych nazw
na funkcje.

Zbiér wszystkich funkcji z A w B oznaczamy symbolem B4. Kazda tréjke (f, A, B)
spehiajaca (7) nazywamy funkcja czeSciowq z A do B. Dziedzina funkcji czesciowej f
nazywamy zbiér

Dom(f) ={a € A | istnieje b € B taki, ze {(a,b) € f}.

Zauwazmy, ze jesli f C A x B jest funkcja czesciowa z A do B, to f jest funkcja z Dom(f)
do B. Jedli f : A — Boraz a € A, to f(a) oznacza jedyny element ze zbioru B taki, ze
(a, f(a)) € f. Element f(a) jest wartosciq funkcji f na elemencie a.

Zauwazmy, ze istnieje doktadnie jedna funkcja f : ) — A, gdzie A jest dowolnym zbiorem.
Jest to pusta relacja. Natomiast, jesli A # (), to nie ma funkcji z A w . W tym przypadku
pusta relacja jest funkcja czeéciowa, ale nie jest funkcja.

Przyklad 4.1

(i) Relacja I4 z przykladu 2.2 (i) jest funkcja z A do A. Relacje < oraz @ nie sa funk-
cjami. P jest funkcja cze$ciowa z N do N. Dziedzina tej funkcji jest zbiér wszystkich
liczb bedacych kwadratami liczb naturalnych. Relacja P~! jest funkcja z N do N oraz
relacja @' jest funkcja z Z do N.

(ii) Indeksowana rodzina zbiordw nazywamy dowolna funkcje ze zbioru indekséw I do
rodziny zbioréw A. Indeksowane rodziny zbioréw zwykle oznacza sie przez {A;}ics.
Sume takiej rodziny oznaczamy przez | J,.; Ai. Podobnie dla przeciec.
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(iii) Niech A bedzie dowolnym zbiorem. Stowem nad alfabetem A nazywamy skonczony
ciag elementéw zbioru A, czyli funkcje w : n — A, gdzie n € N. Liczba n jest
dtugodciq stowa w, oznaczana przez |w|. A* oznacza zbiér wszystkich stéw nad alfa-
betem A. Szczegélnym stowem nad kazdym alfabetem jest stowo puste, oznaczane e,
ktére definiuje sie jako (jedyne) stowo diugosci 0.

Zgodnie z nasza notacja zbior A™ mozna rozumie¢ na dwa sposoby—jako n-krotny
iloczyn kartezjaniski zbioru A lub jako zbidr wszystkich funkcji ze zbioru n do A (czyli
stéw nad A dlugosci n). Aby uniknaé takiej niejednoznacznosci mozemy utozsamiaé
n-tki uporzadkowane elementéw z A z funkcjami z n do A ( w rozdziale dotyczacym
relacji sprawe implementacji n-tek uporzadkowanych pozostawiliSmy otwarta). Przy
takim utozsamieniu n-tka (ai,...,a,) jest reprezentowana przez funkcje w : n — A
taka, ze w(i) = a;41, dla i < n.

Na zbiorze stéw mamy nastepujaco zdefiniowana operacje sktadania. Niech w :n — A
oraz u : m — A beda stowami. Zlozenie stow w oraz u jest stowem wu : m+n — A
zdefiniowanym dla ¢ < m + n nastepujaco.

N w(i), jeslii <n
(wu) (i) = { u(i—n), jeSlin<i<m+n

(iv) Niech A bedzie dowolnym zbiorem. Multizbiorem nad A nazywamy dowolna funkcje
A : A — N. Mulizbiory tym sie réznia od zbioréw, ze ich elementy wystepuja z
krotnosciami, tzn. gdy A(z) = 4, to méwimy, ze element x wystepuje w A z krotnoscia
4. Elementy wystepujace z krotnoscia 0 nie naleza do A. Zbiory mozna oczywiscie
traktowa¢ jako te multizbiory, w ktérych kazdy element wystepuje z krotnoscia co
najwyzej 1. Przez M(A) bedziemy oznaczaé zbiér wszystkich multizbioréw nad A.

Funkcje f : A — B nazwiemy rdznowartosciowq, gdy dla dowolnych ai,as € A, jedli
f(a1) = f(az), to a1 = ay. Funkcje f nazwiemy na B, jesli dla kazdego b € B istnieje a € A
taki, ze f(a) = b. Funkcje, ktéra jest jednocze$nie na oraz réznowartoSciowa nazywamy
bijekcja.

Przyklad 4.2
(i) Identycznosé 14 : A — A jest bijekcja.

(ii) Funkcja f: R — R, zdefiniowana wzorem f(z) = x? nie jest ani réznowartosciowa
ani na R.

(iii) Funkcja f;: {z € R |0 <z} — R, zdefiniowana f,(z) = z? jest réznowartosciowa,
ale nie jest na R. Funkcja f; jest obcieciem funkcji f do zbioru liczb rzeczywistych
niedodatnich.
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(iv) Funkcja fo : R — {z € R | 0 < z}, zdefiniowana f,(z) = z? jest na, ale nie jest
réznowartosciowa.

(v) Funkcja f: Nx N — N zdefiniowana wzorem f(m,n) = 2"(2m+1)—1 jest bijekcja.
Rzeczywiscie, jesli 2" (2my+1) —1 = 2™ (2mq+1) — 1, to 2™ (2my + 1) = 2™ (2me+1).
Zatem, z jednoznaczno$ci rozkladu liczb na czynniki pierwsze wynika, ze n; = no.
Otrzymujemy wiec 2mq; + 1 = 2mqy + 1, czyli m; = my, co oznacza, ze f jest funkcja
réznowartoéciowa. Zeby pokazaé,ze f jest na, wezmy dowolna liczbe naturalna k. Niech
n € N bedzie najwieksza liczba taka, ze 2" dzieli k + 1. Zatem (k + 1)/2" jest liczba
nieparzysta. Niech m = ((k+1)/2"—1)/2. Latwo sprawdzié, ze f(m,n) = k. Dowodzi
to, ze f jest funkcja na N.

Twierdzenie 4.3 Jesli f : A — B oraz g : B — C sq funkcjami, to relacja gf C A x C
jest funkcja z A do C. Dla a € A, (9f)(a) = g(f(a)). Ponadto, jesli funkcje f,g sa obie
roznowartosciowe lub obie na, to gf jest tez roznowartosciowa, lub odpowiednio, na.

Dowdd: Niech a € A bedzie dowolnym elementem. Wtedy istnieje b € B oraz ¢ € C, takie
ze {(a,b) € f oraz (b,c) € g. Zatem istnieje ¢ € C takie, ze {(a,c) € gf. Oznacza to, ze

(9f)(a) = g(f(a)), 9)

o ile pokazemy, ze g f jest funkcja.

Dla pokazania jednoznacznosci zatézmy, ze {a,c;) € gf oraz {(a,c3) € gf. Wtedy istnieja
bi1,by € B takie, ze {(a,b1) € f, {(a,bs) € f, (b1,c1) € g oraz (by,c2) € g. Poniewaz f jest
funkcja to by = by a zatem, poniewaz ¢ jest funkcja, to ¢; = c. Tak wiec pokazalismy, ze
zlozenie gf jest funkcja.

Jesli f i g sa réznowartosciowe oraz (gf)(a1) = (9f)(az), to z ré6znowartosciowosci g oraz
(9) wynika, ze f(a;) = f(a2). Zatem, z réznowartosciowosci f otrzymujemy a; = ag, €O
dowodzi réznowartosciowosci g f.

Zatézmy, ze f i g sa na, i niech ¢ € C bedzie dowolnym elementem. Poniewaz g jest na
C to istnieje b € B taki, ze g(b) = c. Z faktu, ze f jest na B otrzymujemy, ze istnieje a € A
taki, ze f(a) = b. Zatem (gf)(a) = g(f(a)) = g(b) = ¢, co dowodzi, ze gf jest na C. N

Niech f: A — B bedzie funkcja. Funkcje g : B — A nazwiemy odwrotng do f jesli
gf =14 oraz fg = Ig.

Twierdzenie 4.4 Niech f : A — B bedzie funkcja. Nastepujace warunki sq rownowazne

(i) f ma funkcje odwrotna,

(i1) f jest bijekcja,
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(iii) Relacja odwrotna f~' jest funkcja.

Dowéd: Zalézmy (i) i niech g : B — A bedzie funkcja odwrotna do f. Jesli f(a1) = f(ag),
to g(f(a1)) = g(f(az)). Poniewaz gf = I4 to a1 = as. Zatem f jest ré6znowartosciowa. Dla
pokazania, ze f jest na wezmy dowolny b € B. Niech a = g(b). Wtedy f(a) = f(g(b)) = b,
poniewaz fg = Ig. Zatem f jest bijekcja.

Zaltézmy teraz (ii). Pokazemy, ze relacja f~' jest funkcja. Wezmy dowolny b € B.
Poniewaz f jest na, to istnieje a € A takie ze f(a) = b. Oznacza to, ze (b,a) € f~'. Jesli
natomiast (b, a;) € f~! oraz (b,as) € f~! to mamy f(a;) = f(a2) i z réznowartosciowosci f
otrzymujemy a; = a;. W ten sposéb udowodnili$my, ze f~! jest funkcja.

Na zakonczenie dowodu zalézmy (iii). Wéwcezas dla dowolnego a € A, mamy (a,a) €
f7'f, bo {a, f(a)) € f. Zatem I, C f~'f. Z drugiej strony, jesli (a1, as) € f~'f, to istnieje
b € B, takie ze {(a1,b) € f oraz (b,ay) € f~1. Wiec (b,a;) € f~! i poniewaz f~! jest funkcja
to a; = ay. To dowodzi, ze f~1f = I,.

Dowéd réwnosci ff~! = I jest analogiczny i pozostawiamy go czytelnikowi. W

Oczywiscie funkcje odwrotna do danej funkcji f oznaczamy f~1.
Niech f : A — B bedzie funkcja i niech X C A. Obrazem zbioru X przy przeksztalceniu
f nazwiemy zbiér

f(X)={be B istnieje a € X, taki ze f(a) = b}.
Dla zbioru Y C B, przeciwobrazem zbioru Y przy przeksztalceniu f nazwiemy zbiér
) ={a€A| f(a) €Y}

Twierdzenie 4.5 Niech f : A — B bedzie funkcja, niech X bedzie rodzing podzbiorow
zbioru A oraz niech Y bedzie rodzinag podzbioréw zbioru B. Wiedy

- -

(1) FUX) =U{f(X) | X € a},

(ii) Jesli X # 0, to f(NX) € N{F(X) | X € &},
(iii) FH(UY) =U{/H(Y) | YV e},

(iv) Jesti ¥ # 0, to fH(NY) = N{/7 (V) | Y € V}.

Dowdéd: Udowodnimy (i). Niech b € B bedzie dowolnym elementem. Mamy nastepujacy
ciag réwnowaznosci.
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—

be f(UX) wtw, gdy
istnieje a € |J X takie, ze f(a) = b wtw, gdy
istnieje a € A oraz istnieje X € X takie, ze a € X oraz f(a) =b wtw, gdy
istnieje X € X oraz istnieje a € A takie, ze a € X oraz f(a) =b wtw, gdy

istnieje X € X takie, ze b € f(X) oraz f(a) =b wtw, gdy

—

be {f(X)| X e X}

—

Dla dowodu (ii) wezmy dowolny b € f([|X). Oznacza to, ze istnieje a € (X taki, ze
f(a) = b. Zatem dla kazdego X € X mamy: a € X oraz f(a) = b. Tak wiec b nalezy do
kazdego obrazu f(X), dla X przebiegajacych X, czyli b € ﬂ{f(X) | X € X}, co koriczy
dowdd.

Powyzszy dowdéd mozna rozpisa¢ na podobne kroki tak jak w poprzednim przypadku.
Dostaniemy ciag réwnowaznosci za wyjatkiem jednego przejscia, ktore jest tylko w jedna
strone (ktére?).

Natepnie udowodnimy (iii). Niech a € A bedzie dowolnym elementem. Mamy nastepujacy
ciag réwnowaznosci.

ae FHUY) whw, gdy
fla) e UY wtw, gdy
istnieje Y € Y takie, ze f(a) € Y wtw, gdy
istnieje Y € Y takie, ze a € f-1(Y) wtw, gdy
ac U{f7'(Y) | Y eV}

Dowdd (iv) jest zupelnie analogiczny do powyzszego dowodu i dlatego pozostawimy go
czytelnikowi. W

Przyklad 4.6 Zawieranie w punkcie (ii) powyzszego twierdzenia nie moze by¢ zastapione
rownoécia o czym $wiadczy nastepujacy przyktad. Niech f bedzie funkcja z Przykiladu 4.2
(ii). Niech A = {—1} oraz B = {1}. Wéwczas

=

f(AnB) = f(0) =0,
ale
flA)n f(B) = {1}.

Dla funkcji réznowartosciowych zawieranie w Twierdzeniu 4.5 (ii) mozna zastapié¢ réw-
noscia.
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4.1 Definiowanie funkcji przez indukcje

W zbiorze liczb naturalnych mozemy definiowa¢ funkcje wykorzystujac wiasno$é¢ zbioru N
polegajaca na tym, ze jest to najmniejszy zbiér zawierajacy 0 i zamkniety na operacje
nastepnika.

Rozwazmy nastepujacy przykiad.

Przyklad 4.7 Chcemy zdefiniowaé operacje dodawania w zbiorze liczb naturalnych opie-
rajac sie jedynie na operacji nastepnika. Oczywiscie dodawanie f : N x N — N jest funkcja
speliajaca nastepujace warunki.

f(m,0) =m
f(m,n') = f(m,n)".

Zauwazmy, ze powyzsze rownosci mozna traktowac jak opis sposobu na obliczanie dodawa-
nia dwéch liczb naturalnych. Pierwsza réwnosé¢ dotyczy sytuacji gdy drugi argument w f
jest réwny 0, podczas gdy drugie réwnanie definiuje wynik dodawania m do nastepnika n
odwolujac sie do wyniku dodawania m do n, a wiec do pary argumentéw, dla ktérej mozemy
zalozy¢, ze umiemy policzy¢ wartos¢. Liczba m w powyzszej definicji jest dowolna ale usta-
lona. Nazywamy ja parametrem tej definicji.

Do definiowania funkcji powyzsza metoda stuzy nastepujace twierdzenie.

Twierdzenie 4.8 (O definiowaniu funkcji przez indukcje)

Niech A i B bedg dowolnymi zbiorami takimi, ze B # 0. Niech g: A — B oraz h: B x A x
N — B bedq dowolnymi funkcjami. Wtedy istnieje doktadnie jedna funkcja f: AX N — B
spetniajaca nastepujace warunki dla dowolnego a € A orazn € N,

f(a’ 0) = g(a)
f(a,n") = h(f(a,n),a,n).

W powyzszym twierdzeniu A jest zbiorem parametréw. Dowdd Twierdzenia 4.8 bedzie
podany poézniej — w dziale o punktach statych.

Tak wiec wynika z powyzszego twierdzenia, ze istnieja dokladnie jedna funkcja f spel-
niajaca réwnania Przykladu 4.7. Funkcje g i h dla tego przykladu wygladaja nastepujaco:
g=1In, h(z,y,2z) =2, dlaz,y,z € N. Wartos¢ f(m,n) oczywiscie oznaczamy przez m + n.
Podamy jeszcze dwa przyklady definicji indukcyjnych.

Przyklad 4.9 Uzywajac operacji dodawania mozemy zdefiniowaé¢ indukcyjnie mnozenie.
Jest to (jedyna) funkcja f: N x N — N spelniajaca réwnania

f(m,0)=0
flm,n")y =m+ f(m,n).
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Funkcja g dla tego przykladu jest g(x) = 0 dla x € N. Natomiast funkcja h jest
h(z,y,z) =y+=xdlaz,y,z € N.

Przykilad 4.10 Zbiér parametrow oczywiscie nie musi by¢ zbiorem liczb naturalnych. Poniz-
szy uklad réwnan definiuje operacje iteracji Iter : P(Ax A) x N — P(A x A) dowolnej relacji
binarnej w A, gdzie A jest dowolnym zbiorem.

Dlar C A x A oraz n € N definiujemy

Iter(r,0) = I4
Iter(r,n') = r Iter(r,n).

Oczywiscie Iter(r,n) jest n-krotnym zlozeniem relacji r ze soba. Funkcja g : P(A x A) —
P(AxA)jest g(r) = I14,dlar € P(AxA). Natomiast funkcja h : P(AXA)xP(AxA)xN —
P(AxA) jest zdefiniowana nastepujaco: h(ry,re,n) = rory, dlar;,ro € P(AXxA) orazn € N.

Zdarzaja sie sytuacje, jak zobaczymy pdzniej, w ktorych bedziemy definiowali indukcyjnie
funkcje odwotujac sie nie tylko do jej wartosci dla liczby poprzedniej, ale uzalezniajac wynik
od wszystkich dotad obliczonych wartosci. W tym celu udowodnimy nastepujace twierdzenie.

Twierdzenie 4.11 Niech A i B beda dowolnymi zbiorami takimi, ze B # (0. Niech g : A —
B oraz h : B* x A X N — B bedq dowolnymi funkcjami. Wtedy istnieje doktadnie jedna
funkcja f : A X N — B spelniajaca nastepujace warunki dla dowolnego a € A orazn € N,

f(a,0) = g(a)
f(a’ nl) = h((f(a’ 0) °e 'f(a’ TL)),CL, TL)

W powyzszym réwnaniu (f(a,0)--- f(a,n)) jest stowem w B* o literach f(a,0),..., f(a,n).

Dowdéd: Oczywiscie istnieje co najwyzej jedna funkcja f spelniajaca warunki powyzszego
twierdzenia. Jesli f; i fo sa dwiema takimi funkcjami, to bez trudu pokazujemy przez
indukcje, ze dla dowolnych n € N oraz a € A,

fila,n) = fo(a,n).

Latwy dowdd powyzszej rownosci pozostawimy czytelnikowi.

Dla dowodu istnienia f zastosujemy Twierdzenie 4.8. Niech B = B* i niech §j: A — B
bedzie zdefiniowana tak, ze §j(a) jest stowem jednoliterowym g(a). Dalej, niech b : B x A x
N — B bedzie funkcja zdefiniowana nastepujaco

h(w,a,n) = wh(w,a,n),

tzn. do stowa w jest dopisywana litera h(w, a,n).
Niech f: A x N — B bedzie jedyna funkcja zdefiniowana indukcyjnie przez warunki



4 FUNKCJE 23

Niech ¢ : B* — B bedzie funkcja przyporzadkowujaca dowolnemu niepustemu stowu
w ostatnia, tj. najbardziej prawa litere w tym slowie. Ponadto przyjmijmy £(g) = by,
gdzie by € B jest dowolnym, ustalonym elementem. Niech f : A x N — B bedzie funkcja
zdefiniowana nastepujaco

fla,n) = £(f(a,n)).

Najpierw pokazemy, ze .
f(a'an) = (f(a: O)f(aan)) (10)
Dowdd (10) jest przez indukcje ze wzgledu na n. Dla n = 0 mamy

f(a,0) = §(a) = (9(a)) = (U(3(a))) = (£(f(a,0))) = (f(a,0)).

Ponadto

f(a? n,) = ﬁ(f(ain), a, n) = f(a? n)h(f(a n) ) =
(f(a,0)--- f(a,n))t(f(a,n)) = (f(a,0)--- fa,n) f ( ,n')).

Tak wiec pokazaliémy (10). Pozostaje pokazaé, ze f spelnia zadane warunki. Oczywiscie
mamy

Ponadto

Ostatnia réwnos¢ w powyzszym ciagu réwnosci wynika z (10). Tak wiec f jest zadana
funkcja. B

Zadania
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4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

Niech I # 0. Udowodni¢, ze dla kazdej rodziny indeksowanej {A; ;}ier,jes zachodzi

NU4,=U NAise

iel jeJ feJliel

Niech f: A4 — P(A) bedzie taka, ze f(p) = @(A). Czy f jest réznowartosciowa i czy
jest na P(A)? Przedyskutowaé odpowiedz w zaleznosci od zbioru A.

Niech A # () i niech f : A — A. Udowodni¢, ze dla dowolnego a € A istnieje
najmniejszy zbiér X C A taki, ze a € X oraz f~}(X) C X.

Niech f : P(N) x P(N) — P(N) bedzie taka, ze f(A, B) = AN B, dla dowolnych
A, B C N. Czy f jest réznowartosciowa i czy jest na P(N)? Wyznaczy¢ f~1({N}).

—

Niech C' C N bedzie dowolnym zbiorem. Wyznaczyé f(P(C) x P(C)).

Niech f: N¥ — P(N) bedzie taka, ze f(¢) = ¢ 1({1}). Czy f jest réznowartoéciowa
i czy jest na P(N)? Znalezé obraz zbioru wszystkich funkcji stalych i przeciwobrazy
zbioréw {{5}} i {5}.
Niech f: A — Biniech X C A oraz Y C B. Dowie$¢, ze

XCfHY) wiw, gdy f(X)CY.

— —

Poda¢ przyktad takiej funkcji f oraz zbioréw A, B, ze f~1(f(A)) # A oraz f(f~(B)) #
B.

Niech f : A — B. Udowodni¢, ze f jest réznowartosciowa wtedy i tylko wtedy, gdy
dla kazdego zbioru C' i dowolnych g, h: C' — A, jesli fg = fh, to g = h.

Niech f : A — B. Udowodni¢, ze f jest na B wtedy i tylko wtedy, gdy dla kazdego
zbioru C' i dowolnych g, h: B — C, jesli gf = hf, to g = h.

Niech f : P(R) — P(P(R)) bedzie taka, ze f(A) = P(A), dla A C R. Czy f jest
réznowartosciowa i czy jest na P(P(R))? Znalezé f~1(P(P(Q))), gdzie R oznacza zbidr
liczb rzeczywistych a @) zbiér liczb wymiernych.

Dowiesé, ze funkcja f : P(A)? — P(A x B) taka, ze dla ¢ € P(A)%,
flp) ={(a,b) e Ax B |acpb)}
jest bijekcja.
Dowie$é, ze funkcja g : P(A x B) — P(A)® taka, ze dla R C A x B oraz b € B,
g(R)(b) = {a € A (a,b) € R}
jest bijekcja. Czy g jest funkcja odwrotna do funkcji f z poprzedniego zadania?



