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1 Zbiory i operacje na zbiorach

Teorie mnogosci, czyli teorie zbioréw, buduje sie w oparciu o pojecia pierwotne: zbior oraz
zwiazek € “byé elementem”. Napis x € A czytamy: “ x nalezy do A”. Pojecia pierwotne
oznaczaja kategorie poje¢, ktérych sie nie definiuje. Ponadto przyjmuje sie pewien zestaw
wlasnosci dotyczacych tych poje¢ zwanych aksjomatami. Aksjomaty sa wlasnosciami, ktére
przyjmuje sie bez dowodu. Caly taki zestaw nazywa sie aksjomatyczna teoriq. W zaleznosci
od tego jakie przyjmuje sie pojecia i wlasnosci pierwotne — mozemy mieé rézne teorie aksjo-
matyczne dotyczace tego samego dzialu matematyki. Nasze wprowadzenie do teorii mnogosci
bedzie si¢ opiera¢ na znanej aksjomatyce Zermelo-Fraenkla. Nie bedziemy jednak w jawny
sposéb odwolywaé sie do aksjomatéw teorii mnogodci. 2
Do poréwnywania zbioréw stuzy nastepujaca zasada ekstensjonalnosci:

A = B wtw, gdy dla kazdego z, (z € A wtw, gdy = € B).

Tak wiec dwa zbiory sa rowne wtedy i tylko wtedy, gdy maja te same elementy. Méwimy,
ze zbiér A jest zawarty w zbiorze B (oznaczamy A C B), gdy kazdy element zbioru A
jest elementem zbioru B. Gdy A C B, to méwimy tez, ze A jest podzbiorem B. Zasade
ekstensjonalnosci mozna wyrazi¢ przy pomocy zawierania:

A=B wtw, gdy A C B oraz B C A.

Waznym przyktadem zbioru jest zbiér nie majacy zadnych elementow — zbior pusty.
Oznaczamy go przez (). Na mocy zasady ekstensjonalnosci istnieje co najwyzej jeden zbiér
pusty.® Zbiory majace skonczona liczbe elementéw mozemy definiowaé przez wymienienie
tych elementéw. Na przyklad, zbiér {a,b,0} sktada sie z trzech elementéw: a,b oraz 0,
zakladajac, ze a, b, 0 sa trzema réznymi obiektami. Jesli ¢(z) jest pewna wlasnoécia® zalezna
od x oraz A jest zbiorem, to napis {x € A | p(z)} oznacza zbiér wszystkich tych elementéw
x ze zbioru A, ktére spelniaja wlasnosé .

Nastepnie zdefiniujemy pewne operacje na zbiorach. Niech A, B beda zbiorami. Suma
zbioréw A i B nazywamy zbiér A U B, ktorego elementami sa te i tylko te obiekty, ktore sa
elementami A lub elementami B. Przecieciem zbioréw A i B nazywamy zbior AN B, ktérego
elementami sa te i tylko te obiekty, ktore sa jednoczesnie elementami A i B. Rdznicq zbiorow
A i B nazywamy zbiér A — B, ktérego elementami sa te elementy zbioru A, ktére nie naleza
do B. Zbiorem potegowym zbioru A nazywamy zbiér P(A), ktérego elementami sa wszystkie
podzbiory zbioru A.

2Zainteresowanego czytelnika odsytamy do ksiazki K. Kuratowski, A Mostowski “Teoria Mnogosci”, PWN,
Warszawa, 1978.

3Istnienie zbioru pustego trzeba postulowaé¢ aksjomatem.

4Obecne wprowadzenie jest intuicyjne — nie bedziemy formalnie definiowaé pojecia wlasnogci.
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Dzialania sumy i przeciecia sa operacjami dwuargumentowymi. Mozna latwo uogélni¢ te
operacje na dowolne rodziny zbioréw. Niech A bedzie rodzina zbioréw. Suma tej rodziny
nazwiemy zbiér | J A, taki ze dla dowolnego elementu z,

NS UA wtw, gdy istnieje A € A, taki ze x € A.

Dualnie definiujemy przeciecie rodziny A, o ile A # 0. Jest to zbiér () A, taki ze dla
dowolnego elementu z,

x € ﬂ.A wtw, gdy dla kazdego A € A, zachodzi z € A.
Dla przyktadu, pokazemy dwie tozsamosci algebry zbiorow.

Fakt 1.1
(i) A—(BUC)=(A-B)n(A-C).
(it) AN(BUC)=(ANB)U(ANCO).

Dowdéd: Dla dowodu réwnosci pokazemy dwa zawierania: A— (BUC) C (A—B)N(A—-C)
oraz (A—B)N(A—C) C A— (BUC). Aby pokazaé, ze A— (BUC)C (A-B)Nn(A-0C)
nalezy dowies$é¢, ze kazdy element zbioru A — (B U C) nalezy do (A — B) N (A — C). Wezmy
wiec dowolny element z € A — (BUC). Oznacza to, ze © € A oraz x ¢ BUC. Zatem = ¢ B
oraz x ¢ C. Tak wiec x € A oraz ¢ ¢ B, czyli v € A — B. Podobnie, x € A — C. Lacznie
dostajemy z € (A — B)N (A — C). Wobec dowolnosci wyboru elementu z udwodniliSmy
zawieranie

A—(BUC)C(A—B)n(4-0). (1)

Zawieranie w strone przeciwna pokazujemy w podobny sposéb. Jedliz € (A—B)N(A—-C)
tox € Aorazx ¢ Bix ¢ C. Zatem z ¢ BUC i dostajemy z € A — (B UC). Wobec
dowolnosci wyboru x mamy dowdd zawierania

(A-B)Nn(A-C)CA—-(BUC). (2)

Zawierania (1) i (2) daja dow6d pierwszej czesci Faktu 1.1.

Powyzsze rozumowanie mozna skréci¢ zauwazajac, ze wszystkie kroki w dowodzie pierw-
szego zawierania daja sie odwrécié, a tym samym daja dowdd réwnosci. Zilustrujemy to na
przyktadzie dowodu drugiej czesci faktu.

Niech x bedzie dowolnym elementem. Wtedy nastepujace zdania sa réwnowazne.

z€AN(BUC)

z €A oraz (x € Blubz € C)
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(x€ A orazz € B) lub (z € A oraz z € C)

z€(ANB) lub z€ (ANC)

r€(ANB)U(ANC)

Roéwnowazno$é powyzszych pieciu zdan wynika z wprost z definicji operacji N'i U oraz z
wlasnosci spojnikow logicznych “i” oraz “lub”. N

Ponizej podamy rozwiazania dwoch przyktadowych zadan.

Przykiad 1.2

(i) Sprawdzimy czy réwno$¢ AN (BUC) = (AN B)UC zachodzi dla dowolnych zbioréw
A, B,C. Niech x bedzie dowolnym obiektem. Piszac warunki opisujace nalezenie x do
lewej i do prawej strony powyzszej rownosci tatwo jest stwierdzic¢, ze rownowaznosé nie
bedzie zachodzila w sytuacji gdy = nie bedzie nalezal do A oraz bedzie nalezal do C.
Rzeczywiscie, dla zbioréw A = B = () oraz C = {5} powyzsza réwnos¢ nie zachodzi.

(ii) Sprawdzimy dla jakich zbioréw A, B, zachodzi P(AUB) = P(A)UP(B). Zauwazmy,
ze jesli istnieja elementy a € A — B oraz b € B — A, to {a,b} € P(AU B), ale {a, b}
nie nalezy ani do P(A) ani do P(B). Czyli jeSli A— B # () oraz B — A # 0, to
P(AU B) # P(A) U P(B). Z drugiej strony, jesli A — B =0 to A C B i wtedy mamy
P(A) C P(B) oraz P(AUB) = P(B) = P(A)U P(B). Podobnie pokazujemy réwnos¢
gdy B— A ={(. Zatem P(AUB) = P(A) U P(B) wtw, gdy A C B lub B C A.

Chcieliby$my podkresli¢, ze aby dowies¢ ze pewna réwnosé jest prawem rachunku zbioréow
trzeba ja udowodni¢ dla dowolnych zbioréw. Natomiast aby pokazaé, ze pewna réwnosé¢ nie
jest prawem rachunku zbioréw wystarczy pokazaé, ze nie zachodzi ona dla pewnych konkret-
nych zbioréw. Wystarczy tu podaé¢ konkretny zestaw zbioréw, nie silac sie na ogélnosé. Im
prostsze zbiory wybierzemy na kontrprzyklad tym lepiej.

Zadania,
1.1. Dowie$é, ze dla dowolnych zbiorow A, B, jeSli A— B=B — A, to A = B.
1.2. Dowies¢, ze dla dowolnych zbioréw A, B, jesli A C B, to P(A) C P(B).
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1.3.
1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

Czy dla dowolnych zbioréw A, B zachodzi P(AN B) = P(A) N P(B)?
Wyznaczy¢ wszystkie zbiory A, B, C takie, ze (A — C)UB =(AUB) —C.
Niech A bedzie rodzina zbiorow. Dowies¢, ze

ACP(A) wtw,gdy (JAcCA

Ktéra z implikacji w ponizszej rownowaznosci jest prawdziwa dla dowolnej rodziny
zbioréw A?
P(A)CA wtw,gdy AC UA

Dowiesé, ze dla kazdego zbioru A zachodzi | P(A) = A.

Niech A, B beda dowolnymi rodzinami zbioréw. Dowiesé¢, ze [ J(AUB) = (J A)U(J B).
Czy réwnos¢ [ J(AN B) = (JA) N (U B) zachodzi?

Dowies¢, ze kazdy zbior jest suma wszystkich swoich skonczonych podzbioréw.
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2 Relacje

Parq uporzadkowang o wspélrzednych a i b nazywamy obiekt (a,b), jednoznacznie wy-
znaczony przez a, b oraz ich kolejno$¢ wystapienia. Tak wiec podstawowa cecha pary
uporzadkowanej wynikajaca wprost z powyzszej definicji jest nastepujaca wlasnosé. Dla
dowolnych obiektow a, b, c, d

(a,by = {c,d) wtw, gdy a=corazb=d. (3)

Nastepujace twierdzenie pokazuje, ze definicje pary uporzadkowanej mozna oprzeé¢ na
konstrukcji teoriomnogosciowe;.

Fakt 2.1 Dla dowolnych a,b,c,d,

{{a},{a,b}} = {{c},{c,d}} wtw, gdy a = ¢ oraz b = d.

Dowdd: Implikacja z prawej strony w lewa jest oczywista. Zalézmy, ze

{{a};{a,0}} = {{c}, {c, d}}.

Jesli a = b, to zbiér {{a}, {a,b}} ma jeden element, a zatem zbiér po prawej stronie réwnosci
tez musi mie¢ jeden element czylia =b = c =d.

Zalézmy wiec, ze a # b. Wtedy zbiér {{a}, {a,b}} ma dwa elementy. Zatem ¢ # d.
Poniewaz {a} jest jedynym jednoelementowym zbiorem po lewej stronie wiec musi on byé
rowny jedynemu zbiorowi jednoelementowemu po prawej stronie. Zatem

{a} = {c¢} oraz {a,b} ={c,d},

skad natychmiast otrzymujemy a = corazb=d. R

Konstrukeji speliajacych wlasnosé (3) jest wiele. Zwykle nie bedziemy sie odwolywaé
do konkretnej konstrukcji pary uporzadkowanej bowiem zwykle wiasnosci pary wynikaja juz
bezposrednio z (3) i nie zaleza od specyficznej konstrukcji. Przykladem wlasnosci zalezacej
od konkretnej konstrukcji pary z powyzszego twierdzenia jest a € | J{a, b).

Tloczynem kartezjariskim zbioréw A, B nazywamy zbiér A x B, ktérego elementami sa
wszystkie pary uporzadkowane (a,b), takie ze a € A oraz b € B. Tloczyn A x A oznaczamy
przez A2. Podzbiory zbioru A x B nazywamy relacjami w A x B. Podzbiory zbioru A?
nazywamy relacjami binarnymi w A. Jesli R C A X B jest relacja to notacja aRb oznacza
(a,b) € R. Podamy kilka przykladéw relacji.
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Przyklad 2.2
(i) (Identyczno$é) Niech A bedzie zbiorem, I4 = {{a,a) € A x A | a € A}.

(ii) Niech R oznacza zbidr liczb rzeczywistych. Zwykle uporzadkowanie zbioru R wy-
znacza relacje < = {(ry,re) E RX R | r1 < ro}.

(iii) Zbiér P = {(k,m) € N x N | k = m?} jest binarna relacja w zbiorze N wszystkich
liczb naturalnych.

(iv) Zbiér Q = {{k,m) € N x Z | k = m?} jest relacja w N x Z, gdzie Z oznacza zbiér
wszystkich liczb catkowitych.

Niech n > 0 bedzie liczba naturalna. Powyzsze definicje mozna tatwo uogélnié¢ na przypa-
dek gdy wspoirzednych jest n. Uporzadkowana n-tka o wspolrzednych aq, ..., a, nazwiemy
obiekt (ai,...,a,) wyznaczony jednoznacznie przez swoje wspélrzedne oraz kolejno$é ich
wystepowania. Zatem w tym przypadku mamy nastepujaca ceche n-tek uporzadkowanych.
Dla dowolnych obiektow aq,...a, oraz by,..., by,

(a1, ... an) = (b1,...,by) wtw, gdy a; =by,...,a, = by.

Podobnie jak w przypadku par uporzadkowanych nie bedziemy wnikaé¢ w strukture wewne-
trzna n-tek uporzadkowanych. Uzywajac konstrukcji pary mozna n-tke uporzadkowana zde-
finiowa¢ na przyklad nastepujaco.

(a1, ..., an) = {a1,{ag, ..., {@n_1,0a,) ...).

lloczynem kartezjanskim zbioréw Ay, ..., A, nazywamy zbior A; X Ay X...x A, wszystkich
n-tek uporzadkowanych (ai,...,a,) takich, ze a; € Ay,...,a, € A,. Hoczyn kartezjanski
n-krotny zbioru A ze soba oznaczamy przez A™. Relacja w A; X Ay X ... X A, nazywamy
dowolny podzbidr tego zbioru. Relacja n-argumentowq w zbiorze A nazywamy dowolny
podzbiér zbioru A™.

Niech R C A x B, oraz S C B x C beda relacjami. Ztozeniem relacji R i S nazwiemy
relacje®

SR = {{a,c) € A x C | istnieje b € B taki, ze {a,b) € R oraz (b,c) € S}.
Relacjq odwrotng do R nazwiemy relacje R~! C B x A,
R™'={(b,a) € Bx A| (a,b) € R}.

5Kolejnosé relacji wystepujaca w zlozeniu jest by¢ moze niezgodna z intuicja czytelnika. Taka kolejnoéé
jest podyktowana tym, ze funkcje sa szczegdlnym przypadkiem relacji, a skltadanie funkcji historycznie ozna-
cza sie wlasnie w tej kolejnoéci. Niektérzy autorzy oznaczaja zlozenie relacji w odwrotnym porzadku, tzn.
RS. Dla uniknigcia sytuacji, w ktérej bedziemy zmuszeni mie¢ do czynienia z dwoma operacjami sktadania
relacji: jako ogélnych relacji i jako funkcji—zdecydowali§my sie wprowadzi¢ od poczatku odwrotna kolejnosé
skladania dla dowolnych relacji.
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Twierdzenie 2.3 Niech RCAXxB,SCBxC,orazT CC xD. Wtedy
(i) T(SR) = (TS)R.
(ii) (SR)™' = R71S571.
Dowéd: Udowodnimy najpierw (i). Niech (a,d) € A x D. Zachodza nastepujace réwno-
waznosci.
(a,d) € T(SR) wtw, gdy
istnieje ¢ € C, takie ze {a,c) € SR oraz {c,d) € T, wtw, gdy
istnieja ¢ € C oraz b € B, takie ze (a,b) € R oraz (b,c) € S oraz {c,d) € T, wtw, gdy
istnieje b € B, takie ze (a,b) € R oraz (b,d) € TS, wtw, gdy
(a,d) € (TS)R
Dla dowodu (ii) wezmy dowolna pare (c,a) € C' x A. Wtedy
{c,a) € (SR)™" wtw, gdy
(a,c) € SR wtw,gdy
istnieje b € B takie, ze {(a,b) € R oraz (b,c) € S, wtw, gdy
istnieje b € B takie, ze (b,a) € R™! oraz (c,b) € S™!, wtw, gdy
{c,a) € R7'S™!

Zadania,
2.1. Dla kazdego z ponizszych warunkéw sprawdzi¢ czy istnieje relacja R C N x N, gdzie
N oznacza zbiér liczb naturalnych, spelniajaca
a.) R©'¢Z R.
b.) R#0, RR=Roraz RNIy=10.
c.) RF'=N?-R.

2.2. Niech R bedzie niepusta rodzina relacji w A X B i niech S C B x C. Dowies¢
a.) SIUR)=U{SR | Re R}.
b.) S(NR) C{SR | R € R}. Czy zawieranie mozna zastapi¢ réwnoscia?

c) UR)" =U{R" | ReR}.
d) (NR)"'=M{R"|ReR}



