6 TEORIA MOCY 31

6 Teoria mocy
Powiemy, ze zbiory A, B sa réwnoliczne (oznaczamy A ~ B), gdy istnieje bijekcja f : A — B.
Przyklad 6.1

(i) N x N ~ N, gdzie bijekcja f : N x N — N jest funkcja okreslona w przykltadzie 4.2

(5).

(ii) N jest réwnoliczny ze zbiorem liczb parzystych Par, funkcja ustalajaca réwnolicznosé
jest f(n) = 2n.

(iii) Niech a < b beda dowolnymi liczbami rzeczywistymi, wtedy odcinek otwarty (a, b)
jest réwnoliczny z odcinkiem otwartym (0, 1), gdzie bijekcja f : (a,b) — (0,1) jest

funkcja f(z) = ((‘Z:Z))

(iv) Funkcja arctan ustala réwnolicznosé odcinka otwartego (—m/2,7/2) ze zbiorem
wszystkich liczb rzeczywistych.

(v) Dla kazdego zbioru A, zbiér potegowy P(A) jest réwnoliczny z {0,1}4. Funkcja
ustalajaca réwnolicznosé jest ¢ : P(A) — {0, 1} zdefiniowana nastepujaco. Dla X €
P(A), niech ¢(X) : A — {0,1} bedzie funkcja charakterystycznq zbioru X zdefiniowana
nastepujaco

(1, jesliae X
p(X)(a) = { 0, jesliad X.

Pozostawimy czytelnikowi jako ¢wiczenie sprawdzenie, ze ¢ jest istotnie bijekcja.

Nastepujace twierdzenie pokazuje, ze ~ zachowuje sie jak relacja réwnowaznosci.’

Fakt 6.2 Dla dowolnych zbiorow A, B,C,
(i) A~ A.
(11) Jesli A~ B, to B ~ A.
(iii) Jesli A~ B oraz B~ C, to A~ C.

8Poniewaz, jak sie okaze w tym rozdziale, klasa wszystkich zbioréw nie jest zbiorem to ~, z formalnego
punktu widzenia, nie jest relacja.
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Dowdéd: Pierwszy punkt wynika z tego, ze 4 : A — A jest bijekcja. Drugi wynika z tego,
ze jesli f : A — B jest bijekcja to f~! : B — A jest tez bijekcja (zob. Twierdzenie 4.4).
Wreszcie trzeci punkt wynika z tego, ze zlozenie bijekcji jest bijekcja. W

Zaktadamy, ze kazdemu zbiorowi A mozemy przyporzadkowaé taki obiekt |A|, ze dla
dowolnych zbioréw A, B obiekty im przyporzadkowane sa réwne wtedy i tylko wtedy, gdy
te zbiory sa réwnoliczne, tzn.

A~B wtw,gdy |A|=|B|. (17)

Obiekt |A| nazywamy mocq zbioru A. Zatem o mocy danego zbioru mozna mysleé jak
o klasie wszystkich zbioréw réwnolicznych z tym zbiorem. W teorii mnogosci tak mozna
zdefiniowaé przyporzadkowanie kazdemu zbiorowi jego mocy, ze moce sa tez zbiorami.” Moce
zbioréw sa tez nazywane liczbami kardynalnymia.

Powiemy, ze zbior A jest skoriczony, gdy istnieje n € N takie, ze A ~ n. W tym
przypadku mowimy, ze A ma n elementow. Przyjmujemy, ze moc zbioru n elementowego
jest n. Zbior, ktéry nie jest skonczony nazwiemy zbiorem nieskoriczonym.

Ponizsze twierdzenie méwi, ze przyporzadkowanie zbiorom skonczonym jako mocy liczby
elementéw tych zbioréw jest poprawne, tzn. (17) jest spelnione. Moc zbioru liczb natural-
nych oznaczamy symbolem R, (alef zero).

Twierdzenie 6.3
(i) Dla kazdego n € N, nie istnieje funkcja réznowartosciowa z nU{n} w n.
(ii) Dla m,n € N, jeslim ~ n, to m = n.
(i1i) Zadna liczba naturalna nie jest réwnoliczna z N, a zatem N jest nieskoriczony.

Dowéd: Zaczniemy od dowodu (i). Dowdd jest przez indukcje. Dla n = 0 teza oczywiscie
zachodzi, bo nie istnieje funkcja ze zbioru niepustego w (). Zatézmy, ze teza zachodzi dla n i
niech

finU{n}u{n'} > nu{n}

bedzie funkcja réznowartosciowa. Jesli f nie przyjmuje wartosci n, lub jesli f(n') = n,
to obcinajac f do zbioru n U {n} (czyli biorac funkcje f N (n’ x n')) dostaniemy funkcje
réznowartosciowa z n U {n} w n, co daje sprzeczno$¢ z zalozeniem indukcyjnym. Jesli
natomiast f(i) = n, dla pewnego ¢ < n, to niech j bedzie wartoscia f na elemencie n'.

"Klasa wszystkich zbioréw réwnolicznych danemu zbiorowi A nie jest zbiorem, o ile A # .
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Poniewaz f jest réznowartosciowa, to j < n. Wéwezas funkcja g : nU{n} — n zdefiniowana

wzorem @)
| flz), jesliz#1
g(m)—{ 7, jesli z =1
jest funkcja réznowartosciowa (fatwy dowéd pozostawiamy czytelnikowi). Otrzymana sprzecz-
no$¢ dowodzi, ze f nie moze by¢ réznowartosciowa. To koriczy dowdd (i).
Dla dowodu (ii) pokazemy indukcyjnie dla m,n € N, ze

jesli istnieje réznowartosciowa funkcja z m w n, to m C n. (18)

Indukcje prowadzimy ze wzgledu na m. Dla m = 0 teza jest oczywista. Zalézmy wiec,
ze (18) zachodzi i niech f : m' — n bedzie funkcja réznowartos$ciowa. Poniewaz m C m/,
to istnieje funkcja réznowartosciowa z m w n, a zatem, na mocy zalozenia indukcyjnego,
m C n. Przypadek m = n na mocy poprzedniego punktu jest niemozliwy. Zatem m # n i
korzystajac z Twierdzenia 3.3 (iv) dostajemy m € n. Zatem m' = m U {m} C n, co konczy
dowdd (18). Zauwazmy, ze (ii) wynika natychmiast z (18).

Ostatnia cze$¢ twierdzenia wynika bezposrednio z pierwszej, bowiem jesli f : N — n jest
funkcja réznowartosciowa, to jej obciecie do n U {n} dawaloby funkcje réznowartosciowa z
nU{n} w n, co przeczy (i).

6.1 Zbiory przeliczalne

Zbiér A nazwiemy przeliczalnym gdy A jest skoriczony lub réwnoliczny ze zbiorem liczb
naturalnych. Ponizsze twierdzenie charakteryzuje zbiory przeliczalne jako te, ktére mozna
ustawic¢ w ciag.

Twierdzenie 6.4 Zbidr A jest przeliczalny wtedy i tylko wtedy, gdy A = 0 lub istnieje
funkcja z N na A.

Dowdd: Implikacja z lewej w prawo jest oczywista. Udowodnimy implikacje odwrotna.
Poniewaz kazdy skoniczony zbiér jest przeliczalny, to przyjmijmy, ze istnieje funkcja f z NV
na A oraz, ze A jest nieskonczony. Zdefiniujemy nowa funkcje g : N — A, ktéra bedzie
poprawiona wersja funkcji f. Funkcje g definiujemy przez indukcje (zob. Twierdzenie 4.11).
Niech g(0) = f(0). Dalej, niech g(n') = f(k), gdzie k jest najmniejsza liczba o tej wlasnosci,
ze

f(k) 49(0),...,9(n)}

Liczba k£ o powyzszych wlasnosciach istnieje bo A jest nieskoniczony. Natomiast istnienie
najmniejszej liczby o powyzszej wlasnosci wynika z Zasady Minimum (zob. Twierdzenie 3.2).
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Polecamy czytelnikowi jako ¢wiczenie okreslenie funkcji h z Twierdzenia 4.11 dla powyzszej
indukcyjnej definicji.
Pokazemy, ze g jest bijekcja. Najpierw pokazemy, ze

dla kazdego k istnieje n takie, ze f(k) = g(n). (19)

Udowodnimy to przez indukcje wzgledem k. Dla k = 0 wynika to z definicji ¢ w 0. Wezmy
k > 0. Jesli dla pewnego m < k mamy f(m) = f(k), to stosujac zalozenie indukcyjne do m
otrzymujemy n takie, ze f(m) = g(n). Oczywiscie jest to szukane n dla k. W przeciwnym
przypadku wiemy, ze dla wszystkich m < k zachodzi f(k) # f(m). Z zalozenia indukcyjnego
wynika, ze dla kazdego m < k istnieje n,, takie, ze f(m) = g(n,,). Niech n bedzie najwieksza
liczba w zbiorze {n,, | m < k}. Istnienie takiej liczby wynika z Twierdzenia 3.4. Z konstrukcji
funkcji g wynika, ze {f(m) | m < k} = {g(0),9(1),...,g9(n)} oraz ze g(n') = f(k). Zatem
n' jest liczba odpowiadajaca k. To konczy dowdd (19). Niech a € A bedzie dowolnym
elementem. Poniewaz f jest na A to istnieje k takie, ze f(k) = a. Zatem, na mocy (19),
istnieje n takie, ze g(n) = a. Oznacza to, ze g jest na A.

Dla dowodu réznowartosciowosci g zauwazmy, ze

dla kazdego n, g(n) & {g(i) | i < n}. (20)

Dla n = 0 (20) oczywiscie zachodzi. Natomiast dla n > 0 wynika on natychmiast z
definicji g.

Zatem g jest réznowartosciowa i na A, co oznacza, ze N ~ A, czyli A jest zbiorem
przeliczalnym. To konczy dowéd twierdzenia. N

Nastepujace twierdzenie wymienia operacje na zbiorach, ktére zachowuja klase zbioréw
przeliczalnych.

Twierdzenie 6.5
(i) Podzbidr zbioru przeliczalnego jest przeliczalny.

(ii) Jesli f : A — B jest dowolng funkcja oraz X C A jest zbiorem przeliczalnym, to

—

obraz f(X) jest tez zbiorem przeliczalnym.
(iii) Jesli A, B sq przeliczalne, to A x B jest tez przeliczalny.

(iv) Jesli {A; | i € I} jest przeliczalng rodzing zbioréw przeliczalnych (tzn. I jest prze-
liczalny oraz kazde A; jest zbiorem przeliczalnym), to | J,.; A; jest tez zbiorem przeli-
czalnym.

el
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Dowdéd: Niech A bedzie niepustym zbiorem przeliczalnym oraz niech B C A bedzie nie-
pustym podzbiorem. Na mocy Twierdzenia 6.4 istnieje funkcja f z N na A. Niech by € B.
Definiujemy funkcje g : A — B nastepujaco

(b jeslibe B,
9(b) = { by jedli b ¢ B.

Oczywiscie g jest na B a zatem ¢f jest funkcja z N na B wiec na mocy Twierdzenia 6.4, B
jest zbiorem przeliczalnym. To dowodzi (i).

Dla dowodu drugiego punktu niech f : A — B bedzie dowolna funkcja i niech X C A
bedzie zbiorem przeliczalnym. Jesli X = 0, to f(X) = 0 jest zbiorem przeliczalnym. Jesli
X # 0, to z Twierdzenia 6.4 wynika, ze istnieje funkcja ¢ : N — X na X. Niech f’ :
X — f(X) bedzie ograniczeniem f do X, tzn. niech f' = f N (X x B). Oczywiscie f’ jest

- -

na f(X) i zlozenie (f'g) : N — f(X) jest tez funkcja na f(X). Korzystajac ponownie z
Twierdzenia 6.4 wnioskujemy, ze f (X) jest zbiorem przeliczalnym.

Udowodnimy teraz (iii). Jesli A lub B jest zbiorem pustym, to A x B jest tez zbiorem
pustym, a wiec przeliczalnym. Zalézmy wiec, ze A # () # Biniech f: N — Aorazg: N —
B beda funkcjami, odpowiednio na A oraz na B . Definiujemy funkcje h: N x N - Ax B
wzorem h(m,n) = (f(m),g(n)). Oczywiscie h jest funkcja na A x B. Zatem A X B jest
zbiorem przeliczalnym jako obraz zbioru przeliczalnego (zob. (ii) oraz Przyklad 6.1 (i)).

Dla dowodu (iv) wezmy przeliczalna rodzine {A; | i € I} zbioréw przeliczalnych. Bez
zmniejszenia ogdlnosci mozemy przyjaé, ze zbiér indeksow I oraz wszystkie zbiory A; sa
niepuste. Niech f : N — [ bedzie na [ oraz dla kazdego ¢ € I niech g; : N — A; bedzie
na A;. Definiujemy funkcje h : N x N — J,.; Ai wzorem h(m,n) = gfum)(n). Funkcja h
jest na | J;.; A; bowiem jesli a € |J,.; Ai to istnieje 7 € I takie,ze a € A;. Istnieja wowczas
m,n € N takie, ze f(m) =1 (bo f jest na I) oraz g;(n) = a (bo g; jest na A;). Zatem

h(m,n) = gsm)(n) = gi(n) = a,

co pokazuje, ze h jest na J,.; A;. Zatem [J,.; A; jest zbiorem przeliczalnym, jako obraz
zbioru przeliczalnego (zob. (ii)). To konczy dowéd twierdzenia. W

Przyklad 6.6

(i) Zbidér Z liczb catkowitych mozna przedstawi¢ jako sume zbioru liczb naturalnych
oraz zbioru liczb catkowitych ujemnych. Poniewaz ten drugi zbiér jest przeliczalny, to
calos¢ tez.

(ii) Zbiér @ liczb wymiernych mozna przedstawié¢ jako podzbiér produktu Z x N, a
zatem jest przeliczalny.
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(iii) Jesli A jest zbiorem przeliczalnym, to dla kazdego n € N, zbiér A™ wszystkich
funkcji z n w A jest zbiorem przeliczalnym. Zatem zbiér A* = |J{A™ | n € N}
wszystkich stow skoniczonych nad A jest zbiorem przeliczalnym.

6.2 Zbiory nieprzeliczalne

Twierdzenie 6.7 (Cantor)
Dla Zadnego zbioru A, nie istnieje funkcja z A na zbidr potegowy P(A).

Dowdéd: Zatézmy, ze f: A — P(A) jest funkcja na P(A). Niech
Ag={acAlagf(a)}.
Poniewaz f jest na P(A), to istnieje ag € A taki, ze f(ag) = Ap. Tak wiec
ag € Ag wtw, gdy ag € f(ap)-

Innymi stowy,
ag € Ay wtw, gdy ag € Ap.

Otrzymana w ten sposéb sprzeczno$é¢ dowodzi, ze f nie moze byé na P(A), co dowodzi
twierdzenie. W

Whniosek 6.8
(i) Zbior potegowy P(A) nie jest réwnoliczny z Zadnym podzbiorem zbioru A.

(i1) Zbior wszystkich podzbioréw zbioru liczb naturalnych oraz zbidr wszystkich nie-
skoniczonych ciqgéw o wyrazach 0,1 sq zbiorami nieprzeliczalnymi (zob. Przyktad 6.1

(v)).

(11i) Nie istnieje zbidr wszystkich zbiordw.

Dowdd: Udowodnimy tylko ostatnia czesé¢ wniosku. Pozostale cze$ci wynikaja natychmist
z Twierdzenia 6.7. Gdyby A byt zbiorem wszystkich zbioréow, to kazdy podzbior A, bedac
zbiorem, nalezalby do A. Zatem P(A) C A. Wéwczas P(A) bylby réwnoliczny z pewnym
podzbiorem A, co daje sprzeczno$¢ z pierwsza czescia tego wniosku. H

Moc zbioru P(N) wszystkich podzbioréw zbioru liczb naturalnych nazywamy continuum
1 oznaczamy przez c.
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6.3 Poréownywanie liczb kardynalnych

Powiemy, ze moc zbioru A jest mniejsza lub réwna mocy zbioru B, oznaczamy to przez
|A| < |B|, gdy istnieje funkcja réznowartosciowa z A w B. Zauwazmy, ze powyzsza definicja
jest poprawna, tzn. nie zalezy od wyboru reprezentantéw A i B.

Lemat 6.9 Jesli A ~ A’ oraz B ~ B, to istnieje funkcja réznowartosciowa z A w B wtedy
i tylko wtedy, gdy istnieje funkcja réznowartodciowa z A" w B'.

Dowdéd: Niech ¢ : A — A’ oraz v : B — B’ beda bijekcjami. Wéwczas, jesli f : A —
B jest funkcja réznowartoéciowa, to ¢ fo~!t : A" — B’ jest tez funkcja réznowartoéciowa.
Podobnie, jesli g : A" — B’ jest funkcja réznowartoéciowa, to ¥ ~tgp : A — B jest tez
funkcja réznowartoéciowa. M

Powiemy, ze moc zbioru A jest mniejsza od mocy B (oznaczamy to przez |A| < |B|), gdy
|A] < |B| oraz |B| £ |Al.

Twierdzenie 6.10 (Lemat Banacha)
Dla dowolnych funkcji f : A — B oraz g : B — A, istniejq zbiory Ay, As C A oraz
Bi, By C B, takie, zZe

(i) AiUA; = A, A1N Ay =0,
(ZZ) B1UB2:B, BlﬁBgz(Z),

(iii) f(A;) = By,
(iv) §(Bs) = As.

Lemat Banacha bedzie udowodniony w dalszej cze$ci notatek (zob. Przyklad 7.25) —
jego dowdd bedzie wykorzystywal metode punktu stalego. Lemat Banacha bedzie uzyty
w dowodzie nastepnego twierdzenia zwanego twierdzeniem Cantora-Bernsteina. Najpierw
udowodnimy jeszcze pewien lemat.

Lemat 6.11 Jesli A~ A", B~ B orazANB=0iANB =0,to AUB~ A'UB.

Dowéd: Jedli f: A — A’ oraz g : B — B’ sa bijekcjami, to f U g jest bijekcja ustalajaca
réwnolicznos¢é AU B ~ A" U B'. Fakt, ze f U g jest funkcja wynika z tego, ze AN B = (.
Natomiast to, ze jest ona funkcja réznowartosciowa wynikaz A/'NB ' =0. W

Czytelnik z tatwoscia znajdzie przyklad swiadczacy o tym, ze zalozenia o pustosci przeciecia
A1l Boraz A'i B’ sy istotne dla Lematu 6.11.
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Twierdzenie 6.12 Dla dowolnych zbioréw A, B, C,
(i) |Al < |A]
(i6) Jedli |A| < |B| oraz |B| < |C], to |4 < [C],

(i) (Twierdzenie Cantora-Bernsteina) Jesli |A| < |B| oraz |B| < |A|, to |A| =
Bl

Dowdd: Pierwsze dwie czesci sa zupelnie oczywiste. Udowodnimy tylko trzecia czesé.
Niech f: A — B oraz g : B — A beda funkcjami réznowarto$ciowymi. Zastosujmy Lemat
Banacha otrzymujac rozbicia A, Ay C A oraz By, By C B takie, ze

AjUAy = A AiNAy =0 (21)
BiUBy; =B, BiNBy, =10 (22)
f(4) = By (23)
§(B2) = A, (24)

Z (23) wynika, ze A; ~ By, natomiast z (24) wynika Ay ~ B,. Zatem z (21), (22) oraz z
Lematu 6.11 wynika, ze A ~ B, co konczy dowéd twierdzenia. W

Twierdzenie Cantora-Bernsteina jest bardzo pozyteczne przy wyznaczaniu mocy zbioréw.
Zilustrujemy to na jednym przyktadzie.

Twierdzenie 6.13 Zbidr liczb rzeczywistych jest réwnoliczny ze zbiorem {0,1}Y, a zatem
jest zbiorem mocy continuum.

Dowdéd: Najpierw pokazemy, ze [{0,1}"| < |R|. Niech ¢ : {0,1}¥ — R bedzie funkcja
zdefiniowana nastepujaco dla f : N — {0,1},

(f) = PR fg(:) gdy f~'({0}) jest nieskoriczony,
7 3 L gdy FL({0}) jest skoriczony.

Pokazemy, ¢ jest réznowartoSciowa. Po pierwsze zauwazmy, ze jesli f’l({O}) jest nie-
skoriczony, to ¢(f) > 0, natomiast gdy jest skonczony, to ¢(f) < 0. Przypusémy, ze f
oraz ¢ sa dwoma roznymi nieskonczonymi ciagami zawierajacymi nieskonczenie wiele zer.
Niech k bedzie najmniejsza liczba taka, ze f(k) # g(k). Bez zmniejszenia ogdlnosci mozemy
przyjaé, ze f(k) =0 oraz g(k) = 1. Jedli o(f) = ¢(g), to odejmujac pierwsze k — 1 wyrazéw
w odpowiadajacych szeregach dostajemy

> n 1 > n
Z f(n):2_k+ Z gén)

n=k+1 n=k+1

(25)
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Zatem szereg po lewej stronie ma sume mniejsza (bo f zawiera nieskonczenie wiele zer)
od ZZOZHI 2% = 2% Natomiast szereg po prawej stronie ma sume co najmniej 2% Zatem
réwnosé (25) jest niemozliwa, co dowodzi ¢(f) # ¢(g9). W przypadku, gdy f i g zawie-
raja tylko skonczenie wiele zer to postepujemy podobnie. Wéwczas szereg po lewej stronie
réwnosci (25) zbiega do sumy nie wiekszej niz 2%, natomiast szereg po prawej stronie zbiega
do sumy wiekszej (bo g zawiera tylko skoriczenie wiele zer) od 2% Zatem rénosé (25) jest
w tym przypadku tez niemozliwa. Tym samym udowodniliSmy réznowartosciowos¢ prze-
ksztalcenia ¢ oraz

{0, 1} < [R].

Dla dowodu nieréwnosci przeciwnej okreslamy przeksztalcenie ¢ : (0,1) — {0, 1}, ktére
przyporzadkowuje kazdej liczbie rzeczywiste] 0 < r < 1 jej rozwiniecie binarne, tzn. ciag

f: N —{0,1} taki, ze
. f(n)
r:nz_:o T

Ponadto umawiamy sie, ze jesli dana liczba ma dwa rozwiniecia binarne: o skonczonej i o
nieskoniczonej liczbie zer, to wybieramy to ktére ma nieskoniczenie wiele zer. v jest oczywiscie
réznowartosciowa, a zatem

(0, )] < [{0,1}"].

Poniewaz, z Przyktadu 6.1 (iii) oraz (iv) wiemy, ze (0,1) ~ R, to korzystajac z twierdzenia
Cantora-Bernsteina dostajemy teze naszego twierdzenia. N

6.4 Operacje na liczbach kardynalnych

Niech ANB = (). Sume mocy, |A|+ |B| okresla sie jako moc zbioru AU B. Nalezy stwierdzié
poprawnos¢ powyzszej operacji, tzn. pokazac, ze nie zalezy ona od wyboru reprezentantéw.
Wynika to natychmiast z Lematu 6.11.

Iloczyn mocy |A||B| definiuje sie jako moc produktu A x B. Nastepujacy lemat dowodzi
poprawnosci powyzszej operacji.

Lemat 6.14 Jesli A~ A’ oraz B~ B', to Ax B~ A" x B'.

Dowéd: Jedli f: A — A’ oraz g : B — B’ sa bijekcjami, to funkcja h: Ax B — A’ x B’
zdefiniowana wzorem

h(a,b) = (f(a), g(b))

jest bijekcja. Latwy dowdéd pozostawimy czytelnikowi. N
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Potege mocy |A[lBl definiuje si¢ jako moc zbioru funkcji AP. Poprawnosé wynika z
nastepujacego lematu.

Lemat 6.15 Jesli A ~ A’ oraz B~ B', to A? ~ A'5'.

Dowdd: Jedli f: A — A’ oraz g : B — B’ sa bijekcjami, to niech ¢ : A% — A" pedzie
funkcja zdefiniowana nastepujaco: dla dowolnej funkcji h: A — B,

¢(h) = ghf™".
Poniewaz funkcja odwrotna do ¢ jest v : AP 5 AB zdefiniowana dla b’ : A’ — B,
(W) =g ''f,

to na mocy Twierdzenia 4.4, funkcja ¢ jest bijekcja. W

Przyklad 6.1 (i) pokazuje, ze XXy = Ry i ogdlnie, ze dla kazdego n > 0, zachodzi N} = V.
Natomiast Przyktad 6.1 (v) pokazuje, ze 2% = ¢.

Powyzsze trzy operacje na liczbach kardynalnych, zastosowane do liczb naturalnych (jako
mocy zbioréw skoficzonych) pokrywaja sie ze zwyklymi operacjami arytmetycznymi doda-
wania, mnozenia 1 potegowania.

Przykladem prawa dla liczb naturalnych, ktére przenosi sie na dowolne liczby kardynalne
jest nastepujace twierdzenie.

Twierdzenie 6.16 Dla dowolnej liczby kardynalnej |A| zachodzi
|A| < 21,
Dowdéd: Oczywiscie funkcja ¢ : A — P(A) zdefiniowana dla a € A,

o(a) = {a}
jest réznowartosciowa. Zatem
|A] < 24

Z twierdzenia Cantora (Twierdzenie 6.7)wynika natychmiast, ze |A| # |P(A)|. Zatem z
twierdzenia Cantora-Bernsteina (Twierdzenie 6.12 (iii)) oraz powyzszej nieréwnosci wynika,
ze |P(A)| £ |A|l. Dowodzi to tezy naszego twierdzenia. W

Innym przykladem prawa dla liczb kardynalnych, ktére jest uogélnieniem znanego prawa
dla arytmetyki liczb naturalnych jest nastepujace twierdzenie.
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Twierdzenie 6.17 Dla dowolnych zbiorow A, B, C,
(|A|IB|)|C| — ‘A‘\BHCI_

Dowéd: Pokazemy, ze (AB)¢ ~ APXC. Niech ¢ : (AB)¢ — AB*C bedzie funkcja zdefinio-
wana nastepujaco: dla f : C — AB orazbe Bice C,

@(f)(b,¢) = (f(c))(D)-

Zauwazmy, ze w powyzszym wzorze o(f) jest funkcja z B x C''w A, natomiast f(c) jest
funkcja z B w A.

Nastepnie, niech ¢ : AB*C — (AP)C bedzie funkcja, ktéra kazdej funkcji g : B x C — A
przyporzadkowuje funkcje ¥(g) : C — AP okreslona nastepujaco. Dla ¢ € C, funkcja
(¥(9))(c) : B— A jest zdefiniowana réwnaniem

((¥(9)(e))(b) = g(b, ¢).

Pokazemy, ze 1) jest funkcja odwrotna do ¢. Niech f: C — AP bedzie dowolna funkcja.
Woéwezas dla dowolnych b € B oraz ¢ € C' mamy

(W) () = (f)(b,¢) = (F(c))(b)-

Zatem, poniewaz powyzsze réwnosci zachodza dla dowolnego b € B, to

Na zakonczenie dowodu wezmy dowolna funkcje g : B x C — A oraz dowolne b € B i

c € C. Wbweczas
(e(1(9)) (b, ) = ((¥(9))(c))(b) = g(b; c),

co wobec dowolnosci b € B oraz ¢ € C daje

(p(¥(g)) = g

Zatem 1 jest funkcja odwrotna do ¢, co na mocy Twierdzenia 4.4, oznacza, ze ¢ jest
bijekcja ustalajaca zadana réwnolicznosé. N

Korzystajac z twierdzenia 6.17 mozemy pokazac, ze

No — (2N0)N0 = 9o _ 9Ro _ ¢
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Zadania

6.1.

6.2.

6.3.
6.4.
6.5.
6.6.

6.7.

6.8.
6.9.

6.10.

6.11.

6.12.

6.13.

Jaka jest moc zbioru wszystkich funkcji ciaglych z R w R?

Niech f : R — R bedzie dowolna funkcja monotoniczna, tzn. spelniajaca warunek:
r1 < ro implikuje f(r1) < f(rq). Jaka moze byé najwieksza moc zbioru wszystkich
punktow nieciaglosci f?

Jaka jest moc wszystkich skonczonych podzbioréw zbioru N7
Jaka jest moc zbioru wszystkich funkcjiz N w N7
Jaka moze by¢ maksymalna moc rodziny podzbioréw N parami roztacznych?

Niech r C N¥ x N¥ bedzie relacja zdefiniowana nastepujaco: (f,g) € r wtw, gdy
f(n) — g(n) jest liczba parzysta. Jaka jest moc klasy abstrakcji zawierajacej iden-
tycznos$¢ Iy? Jaka jest moc zbioru wszystkich klas abstrakcji r?

Jaka jest moc zbioru wszystkich funkcji monotonicznych f : N — N, tzn. spelniajacych
warunek: n; < ny implikuje f(n;) < f(ng)? Jaka jest moc zbioru wszystkich funkcji
antymonotonicznych f : N — N, tzn. spelniajacych warunek: n; < ny implikuje

f(ng) < f(n1)?
Jaka jest moc zbioru wszystkich ciagéw liczb wymiernych, ktore sa zbiezne do zera?

Jak duzej mocy moze byé zbiér liter T na plaszczyZnie R? takich, ze zadne dwie litery
nie przecinaja sie?

Jakiej najwiekszej mocy moze by¢ rodzina zbioréw K C P(N) taka, ze dla dowolnych
A, B € K, zachodzi A C B lub B C A?

Jakiej mocy jest zbiér wszystkich relacji réwnowaznosci w N7

Czy istnieje relacja rownowaznosci r C R X R, ktorej kazda klasa abstrakcji jest mocy
Ny oraz

a.) Zbiér R/r jest mocy Ng?
b.) Zbiér R/r jest mocy c?

Ktére z ponizszych zdan jest prawdziwe a ktére falszywe?

a.) Jedli f: A — B jest réznowartosciowa oraz nie jest na B, to |A| < |B].
b.) Jesli [A| < [B]iC #0,to|[AxC|<|BxC|.
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6.14. Ktore z nastepujacych zbioréw sa réwnoliczne?

Z, RY, Q", Rx R, {0,1}", {0,1}", P(Q), P(R).

6.15. Dowiesc, ze jesli X jest zbiorem nieprzeliczalnym oraz A jest zbiorem przeliczalnym,
to X UA ~ X. Wywnioskowa¢ stad, ze moc zbioru liczb niewymiernych jest c.



