Proving things

Some meta-properties (mentioned or not explicitly so far):

- semantics of expressions: free variables, referential transparency
- operational semantics: determinism, computations compose
- natural semantics: determinism, $\sim = \Rightarrow^*$
- denotational semantics: adequacy w.r.t. computations
- Hoare's logic: soundness, completeness
- total correctness: *soundness*, *completeness*
- . . .

Proof methods:

- structural induction
- induction on the length of computations
- induction on the derivation trees
- fixed-point induction

• . . .

Sample proofs follow;

semantics runs the show!

Structural induction for expressions

$$e ::= N \mid x \mid e_1 + e_2 \mid e_1 * e_2 \mid e_1 - e_2$$

Given a property $P(_)$ of expressions:

IF

- P(N), for all $N \in \mathbf{Num}$
- P(x), for all $x \in \mathbf{Var}$
- $P(e_1 + e_2)$ follows from $P(e_1)$ and $P(e_2)$, for all $e_1, e_2 \in \mathbf{Exp}$
- $P(e_1 * e_2)$ follows from $P(e_1)$ and $P(e_2)$, for all $e_1, e_2 \in \mathbf{Exp}$
- $P(e_1 e_2)$ follows from $P(e_1)$ and $P(e_2)$, for all $e_1, e_2 \in \mathbf{Exp}$

THEN

• P(e) for all $e \in \mathbf{Exp}$.

Inductive definitions

Free variables in expressions $FV(e) \subset \mathbf{Var}$:

$$FV(N) = \emptyset$$

$$FV(x) = \{x\}$$

$$FV(e_1 + e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(e_1 * e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(e_1 - e_2) = FV(e_1) \cup FV(e_2)$$

Fact: For each expression $e \in \mathbf{Exp}$, the set FV(e) of its free variables is finite.

Proof: by structural induction (easy)

Fact: The meaning of expression depends only on the valuation of its free variables: for any $e \in \mathbf{Exp}$ and $s, s' \in \mathbf{State}$

if
$$s\,x=s'\,x$$
 for all $x\in FV(e)$ then $\mathcal{E}[\![e]\!]\,s=\mathcal{E}[\![e]\!]\,s'$

Proof: (by structural induction)

- for $N \in \mathbf{Num}$, $\mathcal{E}[\![N]\!] s = \mathcal{N}[\![N]\!] = \mathcal{E}[\![N]\!] s'$
- for $x \in \mathbf{Var}$, $\mathcal{E}[\![x]\!] s = s x = s' x = \mathcal{E}[\![x]\!] s'$
- for $e_1, e_2 \in \mathbf{Exp}$, $\mathcal{E}[e_1 + e_2] s = \mathcal{E}[e_1] s + \mathcal{E}[e_2] s = \mathcal{E}[e_1] s' + \mathcal{E}[e_2] s' = \mathcal{E}[e_1 + e_2] s'$
- . . .

by the inductive hypothesis, since $FV(e_1), FV(e_2) \subseteq FV(e_1 + e_2)$

Referential transparency

Substitution of e' for x in e results in e[e'/x]:

$$N[e'/x] = N$$

$$x'[e'/x] = \begin{cases} e' & \text{if } x = x' \\ x' & \text{if } x \neq x' \end{cases}$$

$$(e_1 + e_2)[e'/x] = e_1[e'/x] + e_2[e'/x]$$

$$(e_1 * e_2)[e'/x] = e_1[e'/x] * e_2[e'/x]$$

$$(e_1 - e_2)[e'/x] = e_1[e'/x] - e_2[e'/x]$$

Then:

$$\mathcal{E}\llbracket e[e'/x] \rrbracket \, s = \mathcal{E}\llbracket e \rrbracket \, s[x \mapsto \mathcal{E}\llbracket e' \rrbracket \, s]$$

Proof: by structural induction (easy)

Operational semantics: computations compose

Fact: If $\langle S_1; S_2, s \rangle \Rightarrow^k s'$ then $\langle S_1, s \rangle \Rightarrow^{k_1} \hat{s}$ and $\langle S_2, \hat{s} \rangle \Rightarrow^{k_2} s'$, for some $\hat{s} \in \mathbf{State}$ and $k_1, k_2 > 0$ such that $k = k_1 + k_2$.

Proof: By induction on *k*:

$$k=0$$
: OK

k>0: Then $\langle S_1;S_2,s\rangle\Rightarrow\gamma\Rightarrow^{k-1}s'$. By the definition of the transitions, two possibilities only:

- $-\gamma = \langle S_2, \hat{s} \rangle$, where $\langle S_1, s \rangle \Rightarrow \hat{s}$. OK
- $-\gamma = \langle S_1'; S_2, s'' \rangle$, where $\langle S_1, s \rangle \Rightarrow \langle S_1', s'' \rangle$. By the inductive hypothesis then, $\langle S_1', s'' \rangle \Rightarrow^{k_1} \hat{s}$ and $\langle S_2, \hat{s} \rangle \Rightarrow^{k_2} s'$, for some $\hat{s} \in \mathbf{State}$ and $k_1, k_2 > 0$ such that $k 1 = k_1 + k_2$. OK

Fact: Further context does not influence computation:

if
$$\langle S_1, s \rangle \Rightarrow^k \langle S_1', s' \rangle$$
 then $\langle S_1; S_2, s \rangle \Rightarrow^k \langle S_1'; S_2, s' \rangle$; if $\langle S_1, s \rangle \Rightarrow^k s'$ then $\langle S_1; S_2, s \rangle \Rightarrow^k \langle S_2, s' \rangle$.

Operational vs. natural semantics for TINY

"They are essentially the same"

Fact: The two semantics are equivalent w.r.t. the final results described:

$$\vdash \langle S, s \rangle \leadsto s' \text{ iff } \langle S, s \rangle \Rightarrow^* s'$$

for all statements $S \in \mathbf{Stmt}$ and states $s, s' \in \mathbf{State}$.

Proof:

": By induction on the length of the computation $\langle S, s \rangle \Rightarrow^* s'$.

" \Longrightarrow ": By induction on the structure of the derivation for $\langle S,s\rangle \leadsto s'$.

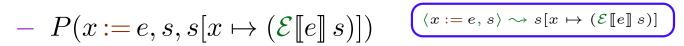
": By induction on the length of the computation $\langle S, s \rangle \Rightarrow^* s'$.

 $\langle S,s \rangle \Rightarrow^k s'$: Take k>0 and $\left|\langle S,s \rangle \Rightarrow \gamma \Rightarrow^{k-1} s'\right|$. By cases on the first step (few sample cases only):

- $\langle x := e, s \rangle \Rightarrow s[x \mapsto (\mathcal{E}\llbracket e \rrbracket s)]$. Then $s' = s[x \mapsto (\mathcal{E}\llbracket e \rrbracket s)]$; $\langle x := e, s \rangle \leadsto s[x \mapsto (\mathcal{E}\llbracket e \rrbracket s)]$. OK
- $\langle S_1; S_2, s \rangle \Rightarrow \langle S_1'; S_2, s'' \rangle$, with $\langle S_1, s \rangle \Rightarrow \langle S_1', s'' \rangle$. Then $\langle S_1'; S_2, s'' \rangle \Rightarrow^{k-1} s'$, and so $\langle S_1', s'' \rangle \Rightarrow^{k_1} \widehat{s''}$ and $\langle S_2, \widehat{s''} \rangle \Rightarrow^{k_2} s'$, for $k_1, k_2 > 0$ with $k_1 + k_2 = k - 1$. Hence also $\langle S_1, s \rangle \Rightarrow^{k_1+1} \widehat{s''}$. Then $\langle S_1, s \rangle \rightsquigarrow \widehat{s''}$ and $\langle S_2, \widehat{s''} \rangle \rightsquigarrow s'$, and so $\langle S_1; S_2, s \rangle \rightsquigarrow s'$. OK
- $\langle \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2, s \rangle \Rightarrow \langle S_1, s \rangle$, with $\mathcal{B}[\![b]\!] \ s = \mathbf{tt}$. Then $\langle S_1, s \rangle \Rightarrow^{k-1} s'$, so $\langle S_1, s \rangle \rightsquigarrow s'$ and $\langle \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2, s \rangle \rightsquigarrow s'$. OK
- $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow \langle S; \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle$, with $\mathcal{B}[\![b]\!] \ s = \mathbf{tt}$. Then $\langle S; \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^{k-1} s'$, hence $\langle S, s \rangle \Rightarrow^{k_1} \hat{s}$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ S, \hat{s} \rangle \Rightarrow^{k_2} s'$, for $k_1, k_2 > 0$ with $k_1 + k_2 = k 1$. Thus $\langle S, s \rangle \rightsquigarrow \hat{s}$, $\langle \mathbf{while} \ b \ \mathbf{do} \ S, \hat{s} \rangle \rightsquigarrow s'$, and so $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \rightsquigarrow s'$. OK

Induction on the structure of derivation trees

To prove $| \text{if } \vdash \langle S, s \rangle \leadsto s' \text{ then } P(S, s, s') | \text{show}:$



 $-P(\mathbf{skip}, s, s) \quad (\mathbf{skip}, s) \sim s$

 $\frac{\langle S_1, s \rangle \leadsto s' \quad \langle S_2, s' \rangle \leadsto s''}{\langle S_1, S_2, s \rangle \leadsto s''}$

clarify quantification,

- $-P(S_1;S_2,s,s'')$ follows from $P(S_1,s,s')$ and $P(S_2,s',s'')$
- $P(\text{if } b \text{ then } S_1 \text{ else } S_2, s, s') \text{ follows from } P(S_1, s, s') \text{ whenever } \mathcal{B}[\![b]\!] s = \text{tt}$

$$\left(\begin{array}{c|c} \langle S_1,s\rangle \leadsto s' & \mathcal{B}\llbracket b\rrbracket \ s = \mathbf{tt} \\ \hline \langle \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2,s\rangle \leadsto s' \\ \end{array} \right)$$

$$\left(\begin{array}{c|c} \langle S_2,s\rangle \leadsto s' & \mathcal{B}\llbracket b\rrbracket \ s = \mathbf{ff} \\ \hline \langle \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2,s\rangle \leadsto s' \\ \hline \end{array} \right)$$

$$\frac{\langle S_2, s \rangle \leadsto s' \quad \mathcal{B} \llbracket b \rrbracket \, s = \mathrm{ff}}{\langle \mathrm{if} \,\, b \,\, \mathrm{then} \,\, S_1 \,\, \mathrm{else} \,\, S_2, s \rangle \leadsto s'}$$

- $-P(\mathbf{if}\ b\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2,s,s')$ follows from $P(S_2,s,s')$ whenever $\mathcal{B}[\![b]\!]\,s=\mathbf{ff}$
- $-P(\mathbf{while}\ b\ \mathbf{do}\ S,s,s'')$ follows from P(S,s,s') and $P(\mathbf{while}\ b\ \mathbf{do}\ S,s',s'')$ $\left(\begin{array}{c|c} \mathcal{B}\llbracket b \rrbracket s = \mathbf{tt} & \langle S, s \rangle \leadsto s' & \langle \mathbf{while} \ b \ \mathbf{do} \ S, s' \rangle \leadsto s'' \\ \hline & \langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \leadsto s'' \end{array}\right)$ whenever $\mathcal{B}[\![b]\!] s = \mathbf{t}\mathbf{t}$
- P(while bdo S, s, s)whenever $\mathcal{B}[\![b]\!] s =$ ff

$$\frac{\mathcal{B}[\![b]\!] s = \mathbf{ff}}{\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \leadsto s}$$

"
$$\Longrightarrow$$
", i.e. if $\vdash \langle S, s \rangle \leadsto s'$ then $\langle S, s \rangle \Longrightarrow^* s'$

By induction on the structure of the derivation for $\langle S, s \rangle \leadsto s'$.

- $\langle x := e, s \rangle \Rightarrow s[x \mapsto (\mathcal{E}[\![e]\!] s)]$. OK
- $\langle \mathbf{skip}, s \rangle \Rightarrow s$. OK
- Suppose $\langle S_1, s \rangle \rightsquigarrow s'$ and $\langle S_2, s' \rangle \rightsquigarrow s''$, so that $\langle S_1, s \rangle \Rightarrow^* s'$ and $\langle S_2, s' \rangle \Rightarrow^* s''$. Then $\langle S_1; S_2, s \rangle \Rightarrow^* \langle S_2, s' \rangle \Rightarrow^* s''$. OK
- Suppose $\mathcal{B}[\![b]\!] s = \mathbf{tt}$ and $\langle S_1, s \rangle \leadsto s'$, so that $\langle S_1, s \rangle \Rightarrow^* s'$. Then $\langle \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2, s \rangle \Rightarrow \langle S_1, s \rangle \Rightarrow^* s'$. OK
- Suppose $\mathcal{B}[\![b]\!] s = \text{ff}$ and $\langle S_2, s \rangle \leadsto s'$, so that $\langle S_2, s \rangle \Rightarrow^* s'$. Then $\langle \text{if } b \text{ then } S_1 \text{ else } S_2, s \rangle \Rightarrow \langle S_2, s \rangle \Rightarrow^* s'$. OK
- Suppose $\mathcal{B}\llbracket b \rrbracket s = \mathbf{tt}$ and $\langle S, s \rangle \leadsto s'$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s' \rangle \leadsto s''$, so that $\langle S, s \rangle \Rightarrow^* s'$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s' \rangle \Rightarrow^* s''$. Then $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow \langle S; \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^* \langle \mathbf{while} \ b \ \mathbf{do} \ S, s' \rangle \Rightarrow^* s''$. OK
- If $\mathcal{B}[\![b]\!] s = \mathbf{ff}$ then $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow s$. OK

Adequacy of denotational semantics

Fact: For each statement $S \in \mathbf{Stmt}$ and states $s, s' \in \mathbf{State}$,

$$\langle S,s \rangle \Rightarrow^* s' \text{ iff } \mathcal{S}[\![S]\!] s = s'$$

Proof:

" \Longrightarrow ": By structural induction on S, then by induction on the length of the computation $\langle S,s\rangle \Rightarrow^* s'$.

" \Leftarrow ": By structural induction on S.

BTW: In the proof of either implication, the only interesting case is that of loops — we omit the other cases.

 $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^* s' \Longrightarrow \ \text{for some} \ n \geq 0, \Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) \ s = s'$ $\text{where} \ \Phi(F) = cond(\mathcal{B}[\![b]\!], \mathcal{S}[\![S]\!]; F, id_{\mathbf{State}})$

Relying on the inductive hypothesis $\langle S, s \rangle \Rightarrow^* \hat{s} \Longrightarrow \mathcal{S}[\![S]\!] s = \hat{s}$, by induction on the length of the computation $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^k s'$.

k>0: Then $\langle \mathbf{while}\ b\ \mathbf{do}\ S,s\rangle \Rightarrow \gamma \Rightarrow^{k-1} s'$. By cases on this first step:

- $\mathcal{B}[\![b]\!]s = \text{ff and } \gamma = s$. Then s' = s, and $\Phi(\emptyset_{\mathbf{State} \to \mathbf{State}})s = s$. OK
- $\mathcal{B}[\![b]\!] s = \mathbf{tt}$ and $\gamma = \langle S; \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^{k-1} s'$. Then $\langle S, s \rangle \Rightarrow^{k_1} \hat{s}$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ S, \hat{s} \rangle \Rightarrow^{k_2} s'$, for some $\hat{s} \in \mathbf{State}$ and $k_1, k_2 > 0$ with $k_1 + k_2 = k 1$. Hence, $\mathcal{S}[\![S]\!] s = \hat{s}$ and $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) \hat{s} = s'$ for some $n \geq 0$. Thus, $\Phi^{n+1}(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = s'$. OK

 $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^* s' \iff \text{for some } n \geq 0, \Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) \ s = s'$ $\text{where } \Phi(F) = cond(\mathcal{B}[\![b]\!], \mathcal{S}[\![S]\!]; F, id_{\mathbf{State}})$

Relying on the inductive hypothesis $(S, s) \Rightarrow^* \hat{s} \iff S[S]s = \hat{s}$, by induction on $n \ge 0$, assuming $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = s'$.

n > 0: Then $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = cond(\mathcal{B}[\![b]\!], \mathcal{S}[\![S]\!]; \Phi^{n-1}(\emptyset_{\mathbf{State} \to \mathbf{State}}), id_{\mathbf{State}}) s$.

- $\mathcal{B}[\![b]\!] s = \text{ff}$: then $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = s$, so s' = s, and also $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow s$. OK
- $\mathcal{B}[\![b]\!] s = \mathbf{tt}$: then $\Phi^n(\emptyset_{\mathbf{State} \to \mathbf{State}}) s = \Phi^{n-1}(\emptyset_{\mathbf{State} \to \mathbf{State}}) (\hat{s}) = s'$, where $\hat{s} = \mathcal{S}[\![S]\!] s$. Hence, $\langle \mathbf{while} \ b \ \mathbf{do} \ S, \hat{s} \rangle \Rightarrow^* s'$, and since $\langle S, s \rangle \Rightarrow^* \hat{s}$, we get $\langle \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow \langle S; \mathbf{while} \ b \ \mathbf{do} \ S, s \rangle \Rightarrow^* \langle \mathbf{while} \ b \ \mathbf{do} \ S, \hat{s} \rangle \Rightarrow^* s'$. OK

Soundness of Hoare's proof calculus

$$\text{if} \quad \boxed{\mathcal{TH}(\mathbf{Int}) \vdash \{\varphi\} \, S \, \{\psi\}} \quad \text{then} \quad \left[= \{\varphi\} \, S \, \{\psi\}, \text{ i.e. } \{\varphi\} \, \llbracket S \rrbracket \subseteq \{\psi\} \right]$$

By induction on the structure of the proof in Hoare's logic:

assignment rule: Easy, but we need a lemma (proof by structural induction on the formulae): $\mathcal{F}[\![\varphi[x\mapsto e]\!]] s = \mathcal{F}[\![\varphi]\!] s[x\mapsto \mathcal{E}[\![e]\!] s].$

Then, for $s \in \mathbf{State}$, if $s \in \{\varphi[x \mapsto e]\}$ then $\mathcal{S}[x := e] = s = s[x \mapsto \mathcal{E}[e] = s] \in \{\varphi\}$. skip rule: Trivial.

if-then-else rule: Easy.

consequence rule: Again the same, given the obvious observation that $\{\varphi_1\} \subseteq \{\varphi_2\}$ iff $\varphi_1 \Rightarrow \varphi_2 \in \mathcal{TH}(\mathbf{Int})$. $\underbrace{\begin{pmatrix} \varphi' \Rightarrow \varphi & \{\varphi\} S \{\psi\} & \psi \Rightarrow \psi' \\ \{\varphi'\} S \{\psi'\} \end{pmatrix}}$

Soundness of the loop rule

loop rule: We need to show that the least fixed point of the operator

$$\Phi(F) = cond(\mathcal{B}[b], \mathcal{S}[S]; F, id_{\mathbf{State}})$$

satisfies

$$fix(\Phi)(\{\varphi\}) \subseteq \{\varphi \land \neg b\}$$

$$\left(\frac{ \left\{ \varphi \wedge b \right\} S \left\{ \varphi \right\} }{ \left\{ \varphi \right\} \text{ while } b \text{ do } S \left\{ \varphi \wedge \neg b \right\} } \right)$$

Proceed by fixed point induction (this is an admissible property!). Suppose that $F(\{\varphi\}) \subseteq \{\varphi \land \neg b\}$ for some $F \colon \mathbf{State} \rightharpoonup \mathbf{State}$, and consider $s \in \{\varphi\}$ with $s' = \Phi(F)(s) \in \mathbf{State}$. Two cases are possible:

- If $\mathcal{B}[\![b]\!] s = \text{ff then } s' = s \in \{\varphi \land \neg b\}.$
- If $\mathcal{B}[\![b]\!] s = \mathbf{tt}$ then $s' = F(\mathcal{S}[\![S]\!] s)$. We get $s' \in \{\varphi \land \neg b\}$ by the assumption on F, since $\{\varphi \land b\} [\![S]\!] \subseteq \{\varphi\}$ by the inductive hypothesis, which implies $\mathcal{S}[\![S]\!] s \in \{\varphi\}$.

So, $\Phi(F)(\{\varphi\}) \subseteq \{\varphi \land \neg b\}$, and the proof is completed.

Further properties

- completeness of Hoare's proof calculus
- soundness and completeness of proof calculus for total correctness

to be discussed later. . .