Proving things'

Some meta-properties (mentioned or not explicitly so far):
e semantics of expressions: free variables, referential transparency
e operational semantics: determinism, computations compose
e natural semantics: determinism, ~» = =*
e denotational semantics: adequacy w.r.t. computations
e Hoare's logic: soundness, completeness
e total correctness: soundness, completeness

Proof methods:
e structural induction

e induction on the length of computations

e induction on the derivation trees Sample proofs follow;

e fixed-point induction semantics runs the show!

Andrzej Tarlecki: Semantics & Verification - 201 -

Structural induction for expressions'

ex=N|x|el+ex|erxex| e —es

Given a property P(_) of expressions:
IF
e P(N), for all N € Num
e P(x), for all x € Var
o P(ey + eg) follows from P(e1) and P(es), for all e1,es € Exp
o P(
o P(

e1 * eg) follows from P(ey) and P(es), for all e1,es € Exp
e1 — eo) follows from P(e1) and P(es), for all e1,eq € Exp

THEN
e P(e) for all e € Exp.

Andrzej Tarlecki: Semantics & Verification - 202 -

Inductive definitions I

Free variables in expressions F'V (e) C Var:

a®
[
|
@
\V}
N——"
|

= FV(@l) U FV(GQ)
€1 * 62) = FV(@l) U FV(€2)
FV(el — 62) = FV(@l) U FV(GQ)

Fact: For each expression e € Exp, the set F'V (e) of its free variables is finite.

Proof: by structural induction (easy)

Andrzej Tarlecki: Semantics & Verification - 203 -

Fact: The meaning of expression depends only on the valuation of its free variables:
for any e € Exp and s, s’ € State

if st =s"x for all x € FV(e) then £[e] s = E]e] s

Proof: (by structural induction)

e for N € Num,
E[N]s=N[N] =E&[N] s

e for x € Var,

Elx]ls=sx=5s"x=E]x] ¢

e for e1,ey € Exp,
Eler +ea]s=EJer] s+ E[ea] s =E[er] s’ + E[ea] s = Eer + ea] &

by the inductive hypothesis,
since FV(el), FV(@Q) C FV(€1 + 62)

Andrzej Tarlecki: Semantics & Verification - 204 -

Referential transparency'

Substitution of €’ for x in e results in ele’ /x]:

Nle'/x] =N

z'le’/x] = {

(e1 + e2)[e’/a] = €&

(e1 xeg)le’ /x| = eq]

¢'/x] — esle /]

(e1 —e2)[e’/z] = e

Then:

/

el fx=2a
x ifxFa

' /x] + esle’ /]

e /x| x egle’ [x]

Elele’ /x]] s = E]e] s|x — E[e€’] s]

Proof: by structural induction (easy)

Andrzej Tarlecki: Semantics & Verification

- 205 -

Operational semantics: computations compose'

Fact: [f (S1;Ss,s) =" s' then (S1,s) =" 5 and (S5, 3) =% s, for some
S € State and k1, ko > 0 such that k = ki1 + ks.

Proof: By induction on k:

k=0: OK

k > 0: Then (S;;Ss,s) = v =F~1 s'. By the definition of the transitions, two
possibilities only:
— v =(59,8), where (S1,s) = §. OK
— ~ = (851;S52,5"), where(S1,s) = (S57,5"). By the inductive hypothesis then,

(87,5") =F 5 and (S,,8) =2 s for some 5 € State and kq, ks > 0 such
that kK — 1 =%k; + ky. OK

Fact: Further context does not influence computation:
if (S1,s) =% (87,5 then (S1;55,s) =% (8]:85,5");
if (S1,s) =k &' then (S1;S5,5) =% (Sy,s').

Andrzej Tarlecki: Semantics & Verification - 206 -

Operational vs. natural semantics for TINYI

“They are essentially the same”

Fact: The two semantics are equivalent w.r.t. the final results described:
= (S, s) ~ 5" iff (S,s) =" ¢

for all statements S € Stmt and states s, s’ € State.
Proof:

<=": By induction on the length of the computation (S, s) =* ¢'.

“ =" By induction on the structure of the derivation for (S, s) ~» ¢'.

Andrzej Tarlecki: Semantics & Verification - 207 -

<=": By induction on the length of the computation (S, s) =* ¢'.

(S,s) =k s': Take k > 0 and | (S,s) = v =*~1 s’ | By cases on the first step

(few sample cases only):
o (x:=¢,s5) = slx— (E]e] s)]. Then s" = s[z — (E[e] s)];
(x:=e,s) ~ slx— (E]e] s)]. OK
o (51;59,5) = (51;5%,s"), with (S1,s) = (57,5").
Then (S): Sy, s") =+ &' and so (S}, s") =k " and (Ss, s") =*2 ¢ for
k1, ks > 0 with k1 + ko = k — 1. Hence also (Sy, s) =F1+1 g7
Then (S1,s) ~» s” and (S, s") ~» ', and so (S1; s, 5) ~ s'. OK
e (if b then S; else Sy, s) = (51,), with B[b] s = tt. Then
(S1,5) =F"1 5" so (S1,s) ~ s" and (if b then S; else S5, s) ~ s'. OK
e (whilebdo S,s) = (S while b do S, s), with B[b] s = tt. Then
(S;while b do S, s) =1 &', hence (S,s) =F 5 and
(while b do S, 38) =*2 s, for ki, ks > 0 with ky + ko =k — 1. Thus
(S,s)~ §, (while bdo S,5) ~ s, and so (while b do S, s) ~ s’. OK

Andrzej Tarlecki: Semantics & Verification - 208 -

Induction on the structure of derivation trees'

To prove |if (S,s) ~ s’ then P(S,s,s’) | show:

(z:=e,s,sle = (€[] s)]) (Lo mriem Cl10))
— P(skip, s, s) ((ote.) ~ =) (S1,8) ~ s <Sz,s’>~»s”)
(
(

|
i

|
i

S1;52,8,8") follows from P(S1,s,s’) and P(Ss,s’,s”)
— P(if b then S, else Ss,s,s’) follows from P(S1,s,s’) whenever B[b] s = tt

(81,8) ~ s’ B[b]s = tt (Sg,s) ~ s’ Bb]s =fF
(if b then S else So,s) ~~ s’ (if b then S else Sg,s) ~ s’

— P(if b then S, else Ss,s,s") follows from P(Ss,s,s”) whenever B[b] s = ff

— P(while b do S, s, s") follows from P(S,s,s’) and P(while b do S, s’, s")
whenever B[b] s = tt C’j‘[[b]] s=tt (S,s)~ s (whilebdo S,s’)~ S”)

(while b do S, s) ~ s’

(while b do S, s) ~

— P(while b do S, s, s) whenever B[b] s = ff B[b] s — £)

Andrzej Tarlecki: Semantics & Verification - 209 -

=" le. |if F(S,s)~ s then (S,s) ="

By induction on the structure of the derivation for (S, s) ~ s'.

o (r:=¢,s5) = sz — (E]e] s)]. OK

e (skip,s) = s. OK

e Suppose (S1,s) ~ ¢ and (S5, s") ~ s”, so that (S7,s) =* s’ and
(S9,8") =* s”. Then (S1;92,s) =* (S2,5") =* s’". OK

e Suppose B[b] s = tt and (51, s) ~ s’, so that (S1,s) =* s’. Then
(if b then S else Ss,s) = (51,5) =% s'. OK

e Suppose B[b] s = ff and (S5, s) ~ s’, so that (S, s) =* s'. Then
(if b then 57 else Sy, s) = (S92,5) =* s'. OK
e Suppose B[b] s = tt and (S, s) ~ s’ and (while b do S, ") ~ s”, so that
(S,8) =* ¢ and (while b do S,s’) =* s’’. Then
(while b do S, s) = (S;while bdo S,s) =* (whilebdo S,s') =* s"’. OK
e If B[b] s = ff then (while b do S,s) = s. OK

Andrzej Tarlecki: Semantics & Verification - 210 -

Adequacy of denotational semantics'

Fact: For each statement S € Stmt and states s, s’ € State,

(S,s) =* ¢ iff S[S]s=+¢

Proof:

“—": By structural induction on S, then by induction on the length of the

computation (S, s) =* s’

“<=": By structural induction on S.

BTW: In the proof of either implication, the only interesting case is that of loops —

we omit the other cases.

Andrzej Tarlecki: Semantics & Verification

- 211 -

(while b do S,s) =* s/ = for some n > 0, ®"(DstateState) S = &’
where ®(F') = cond(B[b], S[S];F, idstate)

Relying on the inductive hypothesis

by induction on the length of the computation (while b do S, s) =

(S, 5) =* § = S[S] s = &

kgl

k > 0: Then (while b do S,s) = v ="*"1 s'. By cases on this first step:
o Bb]s=1f and vy =s. Then s’ = s, and ®(Dstate—state) s = 5. OK

e B[b] s =tt and v = (S;while b do S,s) =*"1 s’. Then (S,s) =F 5 and
(while b do S, 5) =%2 s, for some § € State and &y, ky > 0 with
ki + ko =k — 1. Hence, S[S] s = § and ®"(Dstate_—state) § = s for some
n > 0. Thus, ®" ! (Dstate—state) s = s'. OK

Andrzej Tarlecki: Semantics & Verification

- 212 -

(while b do S, s) =* s’ <= for some n > 0, " (Dstate_State) S = S’
where ®(F') = cond(B[b], S[S];F, idstate)

Relying on the inductive hypothesis | (S, s) =* § <= S[S] s = §|

by induction on n > 0, assuming ®"(Ds¢ateState) S = S’

n > 0: Then ®"(Dsiatestate) s = cond(B[b], S[S];®" 1 (Dstate—State), idstate) S.
o B[b] s = ff: then " (DstateState) S =8, s0 8 = s, and also
(while b do S, s) = 5. OK
o B[b] s = tt: then D" (Dstate—state) S = P 1 (Dsiate—state) (8) = s, where
§ = S[S] s. Hence, (while b do S,8) =* ¢, and since (S, s) =* §, we get
(while b do S, s) = (S;while b do S,s) =* (while bdo S,5) =*s'. OK

Andrzej Tarlecki: Semantics & Verification

- 213 -

Soundness of Hoare’s proof calculus'

if | TH(Int) - {p} S{} | then | = {} S{v}, ie {¢}[S] C {4}

By induction on the structure of the proof in Hoare's logic:

assignment rule: Easy, but we need a lemma (proof by structural induction on the
formulae): Flplx — €] s = Flp] sl — E]e] s]. ({WC - e]}x:—e{go})
Then, for s € State, if s € {p[x — €]} then S[x:=¢] s = s[z — E[e] s] € {p}.

skip rule: Trivial.

composition rule: Assume {p} [S1] C {0} and {0} [S2] C {¢}. Then
{o} [S1:92] = ({} [51]) [S2] € {0} [S2] € {v}. Cso}sl (0} {0} 5y {w})

{p} S1;Sa {¥}

if-then-else rule: Easy.

consequence rule: Again the same, given the obvious observation that {1} C {2}
iff o1 = o € TH(Int). Co’ = {e}S{¥) v= w’)

{o'y s {v'}

Andrzej Tarlecki: Semantics & Verification - 214 -

Soundness of the loop ruIeI

loop rule: We need to show that the least fixed point of the operator

O (F) = cond(B[b], S[S];F, idstate)

satisfies

{oNb} S{p}
{p} while b do S {¢ N —b}
fix(®)({p}) S {o A b}

Proceed by fixed point induction (this is an admissible property!).
Suppose that F({p}) C {p A —b} for some F': State — State, and consider
s € {p} with s’ = ®(F)(s) € State. Two cases are possible:

o If B[b] s =ff then s’ = s € {p A —b}.

o If B[b] s = tt then s’ = F(S[S] s). We get s’ € {¢p A —b} by the assumption
on F', since {¢p A b} [S] C {p} by the inductive hypothesis, which implies
S[S] s € {¢}.

So, ®(F)({¢}) C {© A —b}, and the proof is completed.

Andrzej Tarlecki: Semantics & Verification - 215 -

Further properties I

e completeness of Hoare's proof calculus

e soundness and completeness of proof calculus for total correctness

@to be discussed later. . D

Andrzej Tarlecki: Semantics & Verification - 216 -

